ggml backend v2

This commit is contained in:
abb128 2023-11-25 09:39:04 +02:00
parent f31db527d6
commit ca9c9d5a9a
14 changed files with 6852 additions and 5935 deletions

View File

@ -550,35 +550,35 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
randomize_tensor_normal(lora->tok_embeddings_a, rnd);
randomize_tensor_normal(lora->tok_embeddings_b, rnd);
ggml_set_zero(lora->tok_embeddings_b);
randomize_tensor_normal(lora->norm_a, rnd);
randomize_tensor_normal(lora->norm_b, rnd);
ggml_set_zero(lora->norm_b);
randomize_tensor_normal(lora->output_a, rnd);
randomize_tensor_normal(lora->output_b, rnd);
ggml_set_zero(lora->output_b);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = lora->layers[i];
randomize_tensor_normal(layer.attention_norm_a, rnd);
randomize_tensor_normal(layer.attention_norm_b, rnd);
ggml_set_zero(layer.attention_norm_b);
randomize_tensor_normal(layer.wq_a, rnd);
randomize_tensor_normal(layer.wq_b, rnd);
ggml_set_zero(layer.wq_b);
randomize_tensor_normal(layer.wk_a, rnd);
randomize_tensor_normal(layer.wk_b, rnd);
ggml_set_zero(layer.wk_b);
randomize_tensor_normal(layer.wv_a, rnd);
randomize_tensor_normal(layer.wv_b, rnd);
ggml_set_zero(layer.wv_b);
randomize_tensor_normal(layer.wo_a, rnd);
randomize_tensor_normal(layer.wo_b, rnd);
ggml_set_zero(layer.wo_b);
randomize_tensor_normal(layer.ffn_norm_a, rnd);
randomize_tensor_normal(layer.ffn_norm_b, rnd);
ggml_set_zero(layer.ffn_norm_b);
randomize_tensor_normal(layer.w1_a, rnd);
randomize_tensor_normal(layer.w1_b, rnd);
ggml_set_zero(layer.w1_b);
randomize_tensor_normal(layer.w2_a, rnd);
randomize_tensor_normal(layer.w2_b, rnd);
ggml_set_zero(layer.w2_b);
randomize_tensor_normal(layer.w3_a, rnd);
randomize_tensor_normal(layer.w3_b, rnd);
ggml_set_zero(layer.w3_b);
}
free_random_normal_distribution(rnd);
@ -644,8 +644,9 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
const int rope_mode = 0;
return ggml_rope_custom(ctx,
t, KQ_pos, n_rot, rope_mode, n_ctx,
rope_freq_base, rope_freq_scale);
t, KQ_pos, n_rot, rope_mode, n_ctx, 0,
rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
);
};
set_name(tokens_input, "tokens_input");
@ -773,7 +774,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
if (enable_checkpointing) {
ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
} else {
*gb = *gf;
ggml_graph_cpy(gf, gb);
ggml_build_backward_expand(ctx, gf, gb, true);
}
@ -1308,6 +1309,7 @@ int finetune_train(struct train_params params) {
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
opt->params.print_forward_graph = false;
opt->params.print_backward_graph = false;
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
opt->params.n_threads = params.common.n_threads;
opt->params.past = params.common.opt_past;
opt->params.delta = params.common.opt_delta;
@ -1434,11 +1436,9 @@ int finetune_train(struct train_params params) {
ggml_allocr_free(alloc);
// context for compute tensors without their data
size_t estimated_compute_size_wo_data = (
ggml_tensor_overhead()*GGML_MAX_NODES*2
+ (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*(
params.common.use_checkpointing ? 3 : 2
)
const size_t estimated_compute_size_wo_data = (
2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
(params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
);
struct ggml_init_params ctx_compute_params = {
estimated_compute_size_wo_data, // mem_size
@ -1461,11 +1461,11 @@ int finetune_train(struct train_params params) {
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new_measure(tensor_alignment);
gf = ggml_new_graph(ctx_compute);
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = (enum ggml_cgraph_eval_order) order;
gb = ggml_new_graph(ctx_compute);
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gb_tmp = params.common.use_checkpointing
? ggml_new_graph(ctx_compute)
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
: NULL;
loss = llama_build_lora_finetune_graphs(
&model, &lora, alloc, ctx_compute,
@ -1494,11 +1494,11 @@ int finetune_train(struct train_params params) {
mem_compute_data.resize(max_compute_size);
ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
gf = ggml_new_graph(ctx_compute);
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = best_order;
gb = ggml_new_graph(ctx_compute);
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gb_tmp = params.common.use_checkpointing
? ggml_new_graph(ctx_compute)
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
: NULL;
loss = llama_build_lora_finetune_graphs(
&model, &lora, alloc, ctx_compute,

View File

@ -1,51 +1,21 @@
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml-backend-impl.h"
#include "ggml.h"
#include "ggml-impl.h"
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define UNUSED(x) (void)(x)
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
#define MAX_FREE_BLOCKS 256
//#define GGML_ALLOCATOR_DEBUG
//#define AT_PRINTF printf
#define AT_PRINTF(...) ((void)0)
struct hash_node {
struct ggml_tensor * t;
int n_children;
int n_views;
};
static size_t hash(void * p) {
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
}
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
size_t h = hash(t);
// linear probing
size_t i = h;
while (hash_table[i].t != NULL) {
if (hash_table[i].t == t) {
return &hash_table[i];
}
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
if (i == h) {
// hash table is full
GGML_ASSERT(false);
}
}
hash_table[i].t = t;
return &hash_table[i];
}
//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
#define AT_PRINTF(...)
// TODO: GGML_PAD ?
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
@ -59,20 +29,18 @@ struct free_block {
size_t size;
};
#define MAX_FREE_BLOCKS 256
struct ggml_allocr {
struct ggml_tallocr {
struct ggml_backend_buffer * buffer;
bool buffer_owned;
void * data;
void * base;
size_t alignment;
int n_free_blocks;
struct free_block free_blocks[MAX_FREE_BLOCKS];
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
size_t max_size;
bool measure;
int parse_seq[GGML_MAX_CONCUR];
int parse_seq_len;
#ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024];
@ -80,7 +48,7 @@ struct ggml_allocr {
};
#ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == NULL) {
alloc->allocated_tensors[i] = tensor;
@ -89,7 +57,7 @@ static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor
}
GGML_ASSERT(!"out of allocated_tensors");
}
static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == tensor ||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
@ -103,7 +71,7 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens
#endif
// check if a tensor is allocated by this buffer
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) {
return tensor->buffer == alloc->buffer;
}
@ -111,7 +79,7 @@ static bool ggml_is_view(struct ggml_tensor * t) {
return t->view_src != NULL;
}
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
@ -162,9 +130,10 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
}
tensor->data = addr;
AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data);
tensor->buffer = alloc->buffer;
if (!alloc->measure) {
ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
}
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, tensor);
@ -180,16 +149,16 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
}
#endif
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size);
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
if (ggml_allocr_is_own(alloc, tensor) == false) {
static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
if (ggml_tallocr_is_own(alloc, tensor) == false) {
// the tensor was not allocated in this buffer
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
// the easiest way to deal with this is just to ignore it
AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
// AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
return;
}
@ -199,7 +168,9 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
if (!alloc->measure) {
ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
}
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, tensor);
@ -253,91 +224,180 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens
alloc->n_free_blocks++;
}
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
for (int i = 0; i < n; i++) {
alloc->parse_seq[i] = list[i];
}
alloc->parse_seq_len = n;
}
void ggml_allocr_reset(struct ggml_allocr * alloc) {
void ggml_tallocr_reset(ggml_tallocr_t alloc) {
alloc->n_free_blocks = 1;
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment);
alloc->free_blocks[0].addr = (char *)alloc->base + align_offset;
if (alloc->measure) {
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
} else {
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
}
}
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size);
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr));
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
*alloc = (struct ggml_allocr){
*alloc = (struct ggml_tallocr) {
/*.buffer = */ buffer,
/*.buffer_owned = */ true,
/*.base = */ ggml_backend_buffer_get_base(buffer),
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ false,
/*.parse_seq = */ {0},
/*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {0},
#endif
};
ggml_allocr_reset(alloc);
ggml_tallocr_reset(alloc);
return alloc;
}
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
struct ggml_allocr * alloc = ggml_allocr_new((void *)0x1000, (size_t)-0x1001, alignment);
ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment);
alloc->measure = true;
return alloc;
}
struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr));
ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
// create a backend buffer to get the correct tensor allocation sizes
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1);
*alloc = (struct ggml_allocr){
// TODO: move alloc initialization to a common ggml_tallocr_new_impl function
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
alloc->buffer_owned = true;
alloc->measure = true;
ggml_tallocr_reset(alloc);
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size);
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
alloc->buffer_owned = true;
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
*alloc = (struct ggml_tallocr) {
/*.buffer = */ buffer,
/*.buffer_owned = */ false,
/*.base = */ ggml_backend_buffer_get_base(buffer),
/*.alignment = */ ggml_backend_buffer_get_alignment(buffer),
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ false,
/*.parse_seq = */ {0},
/*.parse_seq_len = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {0},
#endif
};
ggml_allocr_reset(alloc);
ggml_tallocr_reset(alloc);
return alloc;
}
void ggml_allocr_free(struct ggml_allocr * alloc) {
struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) {
return alloc->buffer;
}
void ggml_tallocr_free(ggml_tallocr_t alloc) {
if (alloc == NULL) {
return;
}
if (alloc->buffer_owned) {
ggml_backend_buffer_free(alloc->buffer);
}
free(alloc);
}
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) {
return alloc->measure;
}
//////////// compute graph allocator
size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) {
return alloc->max_size;
}
// graph allocator
struct hash_node {
int n_children;
int n_views;
};
struct ggml_gallocr {
ggml_tallocr_t talloc;
struct ggml_hash_set hash_set;
struct hash_node * hash_values;
size_t hash_values_size;
ggml_tallocr_t * hash_allocs;
int * parse_seq;
int parse_seq_len;
};
ggml_gallocr_t ggml_gallocr_new(void) {
ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr));
*galloc = (struct ggml_gallocr) {
/*.talloc = */ NULL,
/*.hash_set = */ {0},
/*.hash_values = */ NULL,
/*.hash_values_size = */ 0,
/*.hash_allocs = */ NULL,
/*.parse_seq = */ NULL,
/*.parse_seq_len = */ 0,
};
return galloc;
}
void ggml_gallocr_free(ggml_gallocr_t galloc) {
if (galloc == NULL) {
return;
}
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
if (galloc->hash_values != NULL) {
free(galloc->hash_values);
}
if (galloc->hash_allocs != NULL) {
free(galloc->hash_allocs);
}
if (galloc->parse_seq != NULL) {
free(galloc->parse_seq);
}
free(galloc);
}
void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) {
free(galloc->parse_seq);
galloc->parse_seq = malloc(sizeof(int) * n);
for (int i = 0; i < n; i++) {
galloc->parse_seq[i] = list[i];
}
galloc->parse_seq_len = n;
}
static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
return &galloc->hash_values[i];
}
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
@ -378,23 +438,40 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
}
}
static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view) {
assert(view->view_src != NULL && view->view_src->data != NULL);
static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) {
if (galloc->talloc != NULL) {
return galloc->talloc;
}
return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)];
}
static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
ggml_tallocr_t alloc = node_tallocr(galloc, view);
//printf("init_view: %s from src %s\n", view->name, view->view_src->name);
GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
if (update_backend) {
view->backend = view->view_src->backend;
}
view->buffer = view->view_src->buffer;
view->data = (char *)view->view_src->data + view->view_offs;
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
assert(ggml_allocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
if (!alloc->measure) {
ggml_backend_buffer_init_tensor(alloc->buffer, view);
}
}
static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
ggml_tallocr_t alloc = node_tallocr(galloc, node);
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
struct hash_node * ht = alloc->hash_table;
if (node->data == NULL) {
if (ggml_is_view(node)) {
init_view(alloc, node);
init_view(galloc, node, true);
} else {
// see if we can reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) {
@ -405,16 +482,16 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
}
// if the node's data is external, then we cannot re-use it
if (ggml_allocr_is_own(alloc, parent) == false) {
if (ggml_tallocr_is_own(alloc, parent) == false) {
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
continue;
}
struct hash_node * p_hn = hash_get(ht, parent);
struct hash_node * p_hn = hash_get(galloc, parent);
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(ht, view_src);
struct hash_node * view_src_hn = hash_get(galloc, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
// the parent's data that it will need later (same layout requirement). the problem is that then
@ -424,46 +501,44 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
node->view_src = view_src;
view_src_hn->n_views += 1;
init_view(alloc, node);
init_view(galloc, node, false);
return;
}
}
else {
} else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
node->view_src = parent;
p_hn->n_views += 1;
init_view(alloc, node);
init_view(galloc, node, false);
return;
}
}
}
}
ggml_allocr_alloc(alloc, node);
ggml_tallocr_alloc(alloc, node);
}
}
}
size_t ggml_allocr_alloc_graph_n(
struct ggml_allocr * alloc,
struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
ggml_tallocr_t alloc = node_tallocr(galloc, node);
// reset hash table
struct hash_node * ht = alloc->hash_table;
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
ggml_tallocr_free_tensor(alloc, node);
}
static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) {
const int * parse_seq = galloc->parse_seq;
int parse_seq_len = galloc->parse_seq_len;
// count number of children and views
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (ggml_is_view(node)) {
struct ggml_tensor * view_src = node->view_src;
hash_get(ht, view_src)->n_views += 1;
hash_get(galloc, view_src)->n_views += 1;
if (node->buffer == NULL && node->data != NULL) {
// view of a pre-allocated tensor, didn't call init_view() yet
init_view(alloc, node);
init_view(galloc, node, true);
}
}
@ -472,34 +547,22 @@ size_t ggml_allocr_alloc_graph_n(
if (parent == NULL) {
break;
}
hash_get(ht, parent)->n_children += 1;
hash_get(galloc, parent)->n_children += 1;
if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
init_view(alloc, parent);
}
init_view(galloc, parent, true);
}
}
}
// allocate tensors
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
// graph inputs are allocated first to ensure that they are not overwritten by each other
if (inputs != NULL && inputs[g] != NULL) {
for (int i = 0; inputs[g][i] != NULL; i++) {
struct ggml_tensor * input = inputs[g][i];
AT_PRINTF("input: %s\n", input->name);
allocate_node(alloc, input);
}
}
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
int last_barrier_pos = 0;
int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes;
for (int ind = 0; ind < n_nodes; ind++) {
// allocate a node if there is no parse_seq or this is not a barrier
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
if (parse_seq_len == 0 || parse_seq[ind] != -1) {
int i = parse_seq_len ? parse_seq[ind] : ind;
struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs)
@ -508,11 +571,11 @@ size_t ggml_allocr_alloc_graph_n(
if (parent == NULL) {
break;
}
allocate_node(alloc, parent);
allocate_node(galloc, parent);
}
// allocate node
allocate_node(alloc, node);
allocate_node(galloc, node);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
@ -531,11 +594,11 @@ size_t ggml_allocr_alloc_graph_n(
// update parents
// update immediately if there is no parse_seq
// update only at barriers if there is parse_seq
if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
int update_end = alloc->parse_seq_len ? ind : ind + 1;
if ((parse_seq_len == 0) || parse_seq[ind] == -1) {
int update_start = parse_seq_len ? last_barrier_pos : ind;
int update_end = parse_seq_len ? ind : ind + 1;
for (int i = update_start; i < update_end; i++) {
int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
int node_i = parse_seq_len ? parse_seq[i] : i;
struct ggml_tensor * node = gf->nodes[node_i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
@ -543,7 +606,7 @@ size_t ggml_allocr_alloc_graph_n(
if (parent == NULL) {
break;
}
struct hash_node * p_hn = hash_get(ht, parent);
struct hash_node * p_hn = hash_get(galloc, parent);
p_hn->n_children -= 1;
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
@ -551,44 +614,154 @@ size_t ggml_allocr_alloc_graph_n(
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(ht, view_src);
struct hash_node * view_src_hn = hash_get(galloc, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocr_free_tensor(alloc, view_src);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) {
free_node(galloc, view_src);
}
}
else {
if (parent->data != node->data) {
ggml_allocr_free_tensor(alloc, parent);
}
free_node(galloc, parent);
}
}
}
}
AT_PRINTF("\n");
if (alloc->parse_seq_len) {
if (parse_seq_len) {
last_barrier_pos = ind + 1;
}
}
}
// free graph outputs here that wouldn't be freed otherwise because they have no children
if (outputs != NULL && outputs[g] != NULL) {
for (int i = 0; outputs[g][i] != NULL; i++) {
struct ggml_tensor * output = outputs[g][i];
AT_PRINTF("output: %s\n", output->name);
ggml_allocr_free_tensor(alloc, output);
}
}
}
return alloc->max_size;
size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) {
size_t hash_size = graph->visited_hash_table.size;
// check if the hash table is initialized and large enough
if (galloc->hash_set.size < hash_size) {
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
if (galloc->hash_values != NULL) {
free(galloc->hash_values);
}
galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size);
galloc->hash_set.size = hash_size;
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
}
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
return ggml_allocr_alloc_graph_n(alloc, &graph, 1, NULL, NULL);
// reset hash table
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size);
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
galloc->talloc = talloc;
ggml_tallocr_alloc_graph_impl(galloc, graph);
galloc->talloc = NULL;
size_t max_size = ggml_tallocr_max_size(talloc);
return max_size;
}
size_t ggml_allocr_max_size(struct ggml_allocr * alloc) {
return alloc->max_size;
void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_talloc) {
const size_t hash_size = hash_set.size;
GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs));
galloc->talloc = NULL;
// alloc hash_values if needed
if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) {
free(galloc->hash_values);
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
galloc->hash_values_size = hash_size;
}
// free hash_set.keys if needed
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
galloc->hash_set = hash_set;
// reset hash values
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
galloc->hash_allocs = hash_node_talloc;
ggml_tallocr_alloc_graph_impl(galloc, graph);
// remove unowned resources
galloc->hash_set.keys = NULL;
galloc->hash_allocs = NULL;
}
// legacy API wrapper
struct ggml_allocr {
ggml_tallocr_t talloc;
ggml_gallocr_t galloc;
};
static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) {
ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr));
*alloc = (struct ggml_allocr) {
/*.talloc = */ talloc,
/*.galloc = */ ggml_gallocr_new(),
};
return alloc;
}
ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) {
return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment));
}
ggml_allocr_t ggml_allocr_new_measure(size_t alignment) {
return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment));
}
ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer));
}
ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) {
return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size));
}
ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) {
return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend));
}
struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) {
return ggml_tallocr_get_buffer(alloc->talloc);
}
void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
ggml_gallocr_set_parse_seq(alloc->galloc, list, n);
}
void ggml_allocr_free(ggml_allocr_t alloc) {
ggml_gallocr_free(alloc->galloc);
ggml_tallocr_free(alloc->talloc);
free(alloc);
}
bool ggml_allocr_is_measure(ggml_allocr_t alloc) {
return ggml_tallocr_is_measure(alloc->talloc);
}
void ggml_allocr_reset(ggml_allocr_t alloc) {
ggml_tallocr_reset(alloc->talloc);
}
void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) {
ggml_tallocr_alloc(alloc->talloc, tensor);
}
size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
return ggml_tallocr_max_size(alloc->talloc);
}
size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
}

View File

@ -6,27 +6,79 @@
extern "C" {
#endif
struct ggml_backend;
struct ggml_backend_buffer;
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
GGML_API struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
//
// Legacy API
//
typedef struct ggml_allocr * ggml_allocr_t;
// initialize allocator for use with CPU backend only
GGML_API ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API ggml_allocr_t ggml_allocr_new_measure(size_t alignment);
// initialize allocator for use with ggml-backend
GGML_API ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
GGML_API ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
GGML_API ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend);
GGML_API struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc);
// tell the allocator to parse nodes following the order described in the list
// you should call this if your graph are optimized to execute out-of-order
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n);
GGML_API void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n);
GGML_API void ggml_allocr_free (struct ggml_allocr * alloc);
GGML_API bool ggml_allocr_is_measure (struct ggml_allocr * alloc);
GGML_API void ggml_allocr_reset (struct ggml_allocr * alloc);
GGML_API void ggml_allocr_alloc (struct ggml_allocr * alloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
GGML_API size_t ggml_allocr_max_size (struct ggml_allocr * alloc);
GGML_API void ggml_allocr_free (ggml_allocr_t alloc);
GGML_API bool ggml_allocr_is_measure (ggml_allocr_t alloc);
GGML_API void ggml_allocr_reset (ggml_allocr_t alloc);
GGML_API void ggml_allocr_alloc (ggml_allocr_t alloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_allocr_max_size (ggml_allocr_t alloc);
GGML_API size_t ggml_allocr_alloc_graph_n(
struct ggml_allocr * alloc,
struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs);
GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph);
//
// ggml-backend v2 API
//
// Seperate tensor and graph allocator objects
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
// The original API is kept as a wrapper around the new API
// Tensor allocator
typedef struct ggml_tallocr * ggml_tallocr_t;
GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment);
GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment);
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend);
GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_free (ggml_tallocr_t talloc);
GGML_API bool ggml_tallocr_is_measure (ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_reset (ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_alloc (ggml_tallocr_t talloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_tallocr_max_size (ggml_tallocr_t talloc);
// Graph allocator
typedef struct ggml_gallocr * ggml_gallocr_t;
GGML_API ggml_gallocr_t ggml_gallocr_new(void);
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
GGML_API void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n);
GGML_API size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph);
// Allocate tensors from the allocators given by the hash table
GGML_API void ggml_gallocr_alloc_graph_n(
ggml_gallocr_t galloc,
struct ggml_cgraph * graph,
struct ggml_hash_set hash_set,
ggml_tallocr_t * hash_node_talloc);
#ifdef __cplusplus
}

View File

@ -0,0 +1,87 @@
#pragma once
// ggml-backend internal header
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// Backend buffer
//
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_t backend;
ggml_backend_buffer_context_t context;
size_t size;
};
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
//
// Backend
//
typedef void * ggml_backend_context_t;
struct ggml_backend_i {
const char * (*get_name)(ggml_backend_t backend);
void (*free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
// get buffer alignment
size_t (*get_alignment)(ggml_backend_t backend);
// tensor data access
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (ggml_backend_t backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
};
struct ggml_backend {
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
#ifdef __cplusplus
}
#endif

View File

@ -1,7 +1,9 @@
#include "ggml-backend.h"
#include "ggml-backend-impl.h"
#include "ggml-alloc.h"
#include "ggml-impl.h"
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
@ -33,6 +35,10 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
}
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
if (buffer == NULL) {
return;
}
if (buffer->iface.free_buffer != NULL) {
buffer->iface.free_buffer(buffer);
}
@ -43,15 +49,20 @@ size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
return ggml_backend_get_alignment(buffer->backend);
}
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
return buffer->iface.get_base(buffer);
}
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
return buffer->size;
}
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
void * base = buffer->iface.get_base(buffer);
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
return base;
}
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// get_alloc_size is optional, defaults to ggml_nbytes
if (buffer->iface.get_alloc_size) {
return buffer->iface.get_alloc_size(buffer, tensor);
}
@ -59,12 +70,14 @@ size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct g
}
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// init_tensor is optional
if (buffer->iface.init_tensor) {
buffer->iface.init_tensor(buffer, tensor);
}
}
void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// free_tensor is optional
if (buffer->iface.free_tensor) {
buffer->iface.free_tensor(buffer, tensor);
}
@ -73,14 +86,21 @@ void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_t
// backend
ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
return tensor->buffer->backend;
return tensor->buffer ? tensor->buffer->backend : NULL;
}
const char * ggml_backend_name(ggml_backend_t backend) {
if (backend == NULL) {
return "NULL";
}
return backend->iface.get_name(backend);
}
void ggml_backend_free(ggml_backend_t backend) {
if (backend == NULL) {
return;
}
backend->iface.free(backend);
}
@ -101,13 +121,23 @@ void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * dat
}
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
ggml_backend_t backend = ggml_get_backend(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(backend != NULL && "tensor backend not set");
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
backend->iface.synchronize(backend);
}
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
ggml_backend_t backend = ggml_get_backend(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(backend != NULL && "tensor backend not set");
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
backend->iface.synchronize(backend);
}
void ggml_backend_synchronize(ggml_backend_t backend) {
@ -156,7 +186,7 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
// printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
// fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
if (src == dst) {
return;
@ -234,6 +264,8 @@ static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backen
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
GGML_ASSERT(data != NULL && "failed to allocate buffer");
return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
}
@ -271,8 +303,7 @@ static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml
}
static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
// for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
UNUSED(backend);
}
@ -383,3 +414,537 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
}
// scheduler
#define GGML_MAX_BACKENDS 4
#define GGML_MAX_SPLITS 256
#define GGML_MAX_SPLIT_INPUTS 16
struct ggml_backend_sched_split {
ggml_tallocr_t tallocr;
int i_start;
int i_end;
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
int n_inputs;
struct ggml_cgraph * graph;
};
struct ggml_backend_sched {
int n_backends;
ggml_backend_t backends[GGML_MAX_BACKENDS];
ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
ggml_gallocr_t galloc;
struct ggml_hash_set hash_set;
ggml_tallocr_t * node_talloc; // [hash_set.size]
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
struct ggml_cgraph * graph;
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
int n_splits;
struct ggml_context * ctx;
// align context_buffer to GGML_MEM_ALIGN
#ifdef _MSC_VER
__declspec(align(GGML_MEM_ALIGN))
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + GGML_MAX_SPLITS*sizeof(struct ggml_cgraph)];
};
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
#define node_allocr(node) sched->node_talloc[hash_id(node)]
static bool ggml_is_view_op(enum ggml_op op) {
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
}
// returns the priority of the backend, lower is better
static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->backends[i] == backend) {
return i;
}
}
return INT_MAX;
}
static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->tallocs[i] == allocr) {
return i;
}
}
return INT_MAX;
}
// returns the backend that should be used for the node based on the current locations
char causes[GGML_DEFAULT_GRAPH_SIZE*4 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
// ie. kv cache updates
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
// dst
ggml_backend_t cur_backend = ggml_get_backend(node);
if (cur_backend != NULL) {
sprintf(causes[hash_id(node)], "1.dst");
return cur_backend;
}
// view_src
if (node->view_src != NULL && ggml_get_backend(node->view_src) != NULL) {
sprintf(causes[hash_id(node)], "1.vsrc");
return ggml_get_backend(node->view_src);
}
// src
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = node->src[i];
if (src == NULL) {
break;
}
ggml_backend_t src_backend = ggml_get_backend(src);
if (src_backend != NULL) {
int src_prio = sched_backend_prio(sched, src_backend);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
cur_backend = src_backend;
sprintf(causes[hash_id(node)], "1.src%d", i);
}
}
}
return cur_backend;
}
static char * fmt_size(size_t size) {
static char buffer[128];
if (size >= 1024*1024) {
sprintf(buffer, "%zuM", size/1024/1024);
} else {
sprintf(buffer, "%zuK", size/1024);
}
return buffer;
}
static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
ggml_backend_t split_backend = ggml_tallocr_get_buffer(sched->splits[cur_split].tallocr)->backend;
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs);
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
}
fprintf(stderr, "\n");
cur_split++;
}
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
ggml_backend_t node_backend = node_allocr ? ggml_tallocr_get_buffer(node_allocr)->backend : NULL;
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name, fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", causes[hash_id(node)]);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
ggml_backend_t src_backend = src_allocr ? ggml_tallocr_get_buffer(src_allocr)->backend : NULL;
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", causes[hash_id(src)]);
}
fprintf(stderr, "\n");
}
}
// creates a copy of the tensor with the same memory layout
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
dup->nb[i] = tensor->nb[i];
}
return dup;
}
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
// TODO: merge passes
static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset state
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
sched->n_splits = 0;
struct ggml_init_params params = {
/*.mem_size = */ sizeof(sched->context_buffer),
/*.mem_buffer = */ sched->context_buffer,
/*.no_alloc = */ true
};
if (sched->ctx != NULL) {
ggml_free(sched->ctx);
}
sched->ctx = ggml_init(params);
// pass 1: assign backends to ops with allocated inputs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
if (node_allocr(leaf) != NULL) {
// do not overwrite user assignments
continue;
}
ggml_backend_t leaf_backend = ggml_get_backend(leaf);
if (leaf_backend == NULL && leaf->view_src != NULL) {
leaf_backend = ggml_get_backend(leaf->view_src);
}
if (leaf_backend != NULL) {
node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
}
}
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (node_allocr(node) != NULL) {
// do not overwrite user assignments
continue;
}
ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
if (node_backend != NULL) {
node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
}
}
//printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 2: assign backends to ops from current assignments
// TODO:
// - reuse sched_backend_from_cur
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
int cur_prio = INT_MAX;
size_t cur_size = 0;
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != NULL) {
int src_prio = sched_allocr_prio(sched, src_allocr);
size_t src_size = ggml_nbytes(src);
if (src_prio < cur_prio && src_size >= cur_size) {
cur_prio = src_prio;
cur_size = src_size;
node_allocr = src_allocr;
sprintf(causes[hash_id(node)], "2.src%d", j);
}
}
}
if (node_allocr != NULL) {
node_allocr(node) = node_allocr;
}
}
}
//printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 3: assign backends to remaining src from dst (should only be leafs)
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr == NULL) {
node_allocr(src) = node_allocr;
}
}
}
//printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
// pass 4: split graph, find tensors that need to be copied
// TODO:
// - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
// find first backend
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (node->view_src == NULL) {
sched->splits[0].tallocr = node_allocr(node);
break;
}
}
sched->splits[0].i_start = 0;
sched->splits[0].n_inputs = 0;
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr != cur_allocr) {
sched->splits[cur_split].i_end = i;
cur_split++;
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
sched->splits[cur_split].tallocr = node_allocr;
sched->splits[cur_split].i_start = i;
sched->splits[cur_split].n_inputs = 0;
memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
cur_allocr = node_allocr;
cur_backend_id = sched_allocr_prio(sched, cur_allocr);
}
// find inputs that are not on the same backend
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr) {
int n_inputs = sched->splits[cur_split].n_inputs++;
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
// create copies
size_t id = hash_id(src);
if (sched->node_copies[id][cur_backend_id] == NULL) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
sched->node_copies[id][cur_backend_id] = tensor_copy;
node_allocr(tensor_copy) = cur_allocr;
ggml_backend_t backend = ggml_tallocr_get_buffer(cur_allocr)->backend;
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
}
node->src[j] = sched->node_copies[id][cur_backend_id];
}
}
}
sched->splits[cur_split].i_end = graph->n_nodes;
sched->n_splits = cur_split + 1;
//fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
#if 1
// sanity check: all sources should have the same backend as the node
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_tallocr_t node_allocr = node_allocr(node);
if (node_allocr == NULL) {
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_tallocr_t src_allocr = node_allocr(src);
if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
node->name, node_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(node_allocr)->backend) : "NULL",
j, src->name, src_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(src_allocr)->backend) : "NULL");
}
}
}
#endif
// create copies of the graph for each split
// FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(sched->ctx, graph, split->i_start, split->i_end);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
input_cpy->src[0] = input;
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
}
for (int j = split->i_start; j < split->i_end; j++) {
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
}
}
sched->graph = graph_copy;
}
static void sched_alloc_splits(ggml_backend_sched_t sched) {
ggml_gallocr_alloc_graph_n(
sched->galloc,
sched->graph,
sched->hash_set,
sched->node_talloc);
}
static void sched_compute_splits(ggml_backend_sched_t sched) {
uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
struct ggml_backend_sched_split * splits = sched->splits;
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &splits[i];
ggml_backend_t split_backend = ggml_tallocr_get_buffer(split->tallocr)->backend;
int split_backend_id = sched_backend_prio(sched, split_backend);
// copy the input tensors to the split backend
uint64_t copy_start_us = ggml_time_us();
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(split->inputs[j])][sched_backend_prio(sched, split_backend)];
if (split->inputs[j]->buffer == NULL) {
if (split->inputs[j]->view_src == NULL) {
fprintf(stderr, "input %s has no buffer and no view_src\n", split->inputs[j]->name);
exit(1);
}
struct ggml_tensor * view = split->inputs[j];
view->backend = view->view_src->backend;
view->buffer = view->view_src->buffer;
view->data = (char *)view->view_src->data + view->view_offs;
ggml_backend_buffer_init_tensor(ggml_backend_sched_get_buffer(sched, view->buffer->backend), view);
}
if (input_cpy->buffer == NULL) {
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
exit(1);
}
GGML_ASSERT(split->inputs[j]->buffer->backend != input_cpy->buffer->backend);
GGML_ASSERT(input_cpy->buffer->backend == split_backend);
ggml_backend_tensor_copy(split->inputs[j], input_cpy);
}
// ggml_backend_synchronize(split_backend);
int64_t copy_end_us = ggml_time_us();
copy_us[split_backend_id] += copy_end_us - copy_start_us;
#if 0
char split_filename[GGML_MAX_NAME];
snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
ggml_graph_dump_dot(split->graph, NULL, split_filename);
#endif
uint64_t compute_start_us = ggml_time_us();
ggml_backend_graph_compute(split_backend, split->graph);
// ggml_backend_synchronize(split_backend);
uint64_t compute_end_us = ggml_time_us();
compute_us[split_backend_id] += compute_end_us - compute_start_us;
}
#if 0
// per-backend timings
fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
for (int i = 0; i < sched->n_backends; i++) {
if (copy_us[i] > 0 || compute_us[i] > 0) {
fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
}
}
#endif
}
static void sched_reset(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_reset(sched->tallocs[i]);
}
}
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
memset(sched, 0, sizeof(struct ggml_backend_sched));
fprintf(stderr, "ggml_backend_sched size: %lu KB\n", sizeof(struct ggml_backend_sched)/1024);
sched->n_backends = n_backends;
for (int i = 0; i < n_backends; i++) {
sched->backends[i] = backends[i];
}
sched->galloc = ggml_gallocr_new();
// init measure allocs for each backend
for (int i = 0; i < n_backends; i++) {
sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
}
return sched;
}
void ggml_backend_sched_free(ggml_backend_sched_t sched) {
if (sched == NULL) {
return;
}
for (int i = 0; i < sched->n_backends; i++) {
ggml_tallocr_free(sched->tallocs[i]);
}
ggml_gallocr_free(sched->galloc);
free(sched->hash_set.keys);
free(sched->node_talloc);
free(sched->node_copies);
free(sched);
}
void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
// initialize hash tables
size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
sched->hash_set.size = hash_size;
sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
sched_split_graph(sched, measure_graph);
sched_alloc_splits(sched);
// allocate buffers and reset allocators
for (int i = 0; i < sched->n_backends; i++) {
size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
ggml_tallocr_free(sched->tallocs[i]);
sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
}
sched_reset(sched);
}
void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
sched_split_graph(sched, graph);
sched_alloc_splits(sched);
sched_compute_splits(sched);
sched_reset(sched);
}
ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
return sched->tallocs[backend_index];
}
ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
}
void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = sched_backend_prio(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
node_allocr(node) = sched->tallocs[backend_index];
}

View File

@ -1,51 +1,20 @@
#pragma once
#include "ggml.h"
#include "ggml-alloc.h"
#ifdef __cplusplus
extern "C" {
#endif
struct ggml_backend;
//
// Backend buffer
//
struct ggml_backend_buffer;
// type-erased backend-specific types / wrappers
typedef void * ggml_backend_context_t;
typedef void * ggml_backend_graph_plan_t;
typedef void * ggml_backend_buffer_context_t;
// avoid accessing internals of these types
typedef struct ggml_backend * ggml_backend_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
//
// backend buffer
//
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
};
// TODO: hide behind API
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_t backend;
ggml_backend_buffer_context_t context;
size_t size;
};
// backend buffer functions
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
@ -55,50 +24,13 @@ extern "C" {
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
//
// backend
// Backend
//
struct ggml_backend_i {
const char * (*get_name)(ggml_backend_t backend);
struct ggml_backend;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
void (*free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
// get buffer alignment
size_t (*get_alignment)(ggml_backend_t backend);
// tensor data access
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (ggml_backend_t backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
};
// TODO: hide behind API
struct ggml_backend {
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
// backend helper functions
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
@ -133,11 +65,72 @@ extern "C" {
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
// Create a backend buffer from an existing pointer
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
//
// Backend scheduler
//
// The backend scheduler allows for multiple backends to be used together
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
// The backends are selected based on:
// - the backend that supports the operation
// - the location of the pre-allocated tensors (e.g. the weights)
/*
Example usage:
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
// initialize buffers from a measure graph
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
// in build_graph:
build_graph(...) {
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
ggml_allocr_alloc(alloc_cpu, tensor);
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
}
// allocate backend buffers from measure graph
ggml_backend_sched_init_measure(sched, measure_graph);
// the scheduler is now ready to compute graphs
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
*/
struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
// Allocate a graph on the backend scheduler
GGML_API void ggml_backend_sched_graph_compute(
ggml_backend_sched_t sched,
struct ggml_cgraph * graph);
#ifdef __cplusplus
}
#endif

View File

@ -39,12 +39,6 @@ extern "C" {
#endif
#endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
@ -230,7 +224,19 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
#endif
// TODO: backend v2 PR
#define GGML_HASHTABLE_FULL ((size_t)-1)
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// return index, asserts if table is full
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key);
#ifdef __cplusplus
}

View File

@ -14,32 +14,12 @@
//
#include <arm_neon.h>
#if !defined(__aarch64__)
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
return vcombine_s16(a0, b0);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
#endif
#else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
#include <altivec.h>
#undef bool
#define bool _Bool
@ -47,13 +27,15 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if !defined(__riscv) && !defined(__s390__)
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
@ -61,6 +43,7 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
@ -283,14 +266,34 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
#if defined(__ARM_NEON)
#if !defined(__aarch64__)
/*
// 64-bit compatibility
// vaddvq_s16
// vpaddq_s16
// vaddvq_s32
// vaddvq_f32
// vmaxvq_f32
// vcvtnq_s32_f32
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
return vcombine_s16(a0, b0);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
*/
inline static float vaddvq_f32(float32x4_t v) {
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
@ -313,6 +316,96 @@ inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
return res;
}
// vld1q_s16_x2
// vld1q_u8_x2
// vld1q_u8_x4
// vld1q_s8_x2
// vld1q_s8_x4
// TODO: double-check these work correctly
typedef struct ggml_int16x8x2_t {
int16x8_t val[2];
} ggml_int16x8x2_t;
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
ggml_int16x8x2_t res;
res.val[0] = vld1q_s16(ptr + 0);
res.val[1] = vld1q_s16(ptr + 8);
return res;
}
typedef struct ggml_uint8x16x2_t {
uint8x16_t val[2];
} ggml_uint8x16x2_t;
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
ggml_uint8x16x2_t res;
res.val[0] = vld1q_u8(ptr + 0);
res.val[1] = vld1q_u8(ptr + 16);
return res;
}
typedef struct ggml_uint8x16x4_t {
uint8x16_t val[4];
} ggml_uint8x16x4_t;
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
ggml_uint8x16x4_t res;
res.val[0] = vld1q_u8(ptr + 0);
res.val[1] = vld1q_u8(ptr + 16);
res.val[2] = vld1q_u8(ptr + 32);
res.val[3] = vld1q_u8(ptr + 48);
return res;
}
typedef struct ggml_int8x16x2_t {
int8x16_t val[2];
} ggml_int8x16x2_t;
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
ggml_int8x16x2_t res;
res.val[0] = vld1q_s8(ptr + 0);
res.val[1] = vld1q_s8(ptr + 16);
return res;
}
typedef struct ggml_int8x16x4_t {
int8x16_t val[4];
} ggml_int8x16x4_t;
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
ggml_int8x16x4_t res;
res.val[0] = vld1q_s8(ptr + 0);
res.val[1] = vld1q_s8(ptr + 16);
res.val[2] = vld1q_s8(ptr + 32);
res.val[3] = vld1q_s8(ptr + 48);
return res;
}
#else
#define ggml_int16x8x2_t int16x8x2_t
#define ggml_uint8x16x2_t uint8x16x2_t
#define ggml_uint8x16x4_t uint8x16x4_t
#define ggml_int8x16x2_t int8x16x2_t
#define ggml_int8x16x4_t int8x16x4_t
#define ggml_vld1q_s16_x2 vld1q_s16_x2
#define ggml_vld1q_u8_x2 vld1q_u8_x2
#define ggml_vld1q_u8_x4 vld1q_u8_x4
#define ggml_vld1q_s8_x2 vld1q_s8_x2
#define ggml_vld1q_s8_x4 vld1q_s8_x4
#endif
#endif
@ -1275,7 +1368,12 @@ static float make_qkx2_quants(int n, int nmax, const float * restrict x, const f
float max = x[0];
float sum_w = weights[0];
float sum_x = sum_w * x[0];
#ifdef HAVE_BUGGY_APPLE_LINKER
// use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
for (volatile int i = 1; i < n; ++i) {
#else
for (int i = 1; i < n; ++i) {
#endif
if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i];
float w = weights[i];
@ -3559,7 +3657,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t vzero = vdupq_n_s32(0);
#endif
int8x16x2_t q2bytes;
ggml_int8x16x2_t q2bytes;
uint8_t aux[16];
float sum = 0;
@ -3578,8 +3676,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
vst1q_u8(aux, scales);
const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
const ggml_int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
@ -3607,7 +3705,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
#endif
#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
q8bytes = vld1q_s8_x2(q8); q8 += 32;\
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
MULTIPLY_ACCUM_WITH_SCALE((index));
@ -3615,9 +3713,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/128; ++j) {
const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
MULTIPLY_ACCUM_WITH_SCALE(0);
@ -3951,7 +4049,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t vzero = vdupq_n_s32(0);
#endif
int8x16x4_t q2bytes;
ggml_int8x16x4_t q2bytes;
uint32_t aux32[2];
const uint8_t * scales = (const uint8_t *)aux32;
@ -3976,7 +4074,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t q2bits = vld1q_u8(q2);
const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
@ -4240,7 +4338,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t m3 = vshlq_n_u8(m0, 3);
const int8_t m32 = 32;
int8x16x4_t q3bytes;
ggml_int8x16x4_t q3bytes;
float sum = 0;
@ -4252,9 +4350,9 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const uint8_t * restrict qh = x[i].hmask;
const int8_t * restrict q8 = y[i].qs;
uint8x16x2_t qhbits = vld1q_u8_x2(qh);
ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
uint8x16x4_t q3h;
ggml_uint8x16x4_t q3h;
int32_t isum = 0;
@ -4270,9 +4368,9 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/128; ++j) {
const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
@ -4774,7 +4872,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t m3b = vdupq_n_u8(0x3);
const uint8x16_t mh = vdupq_n_u8(4);
int8x16x4_t q3bytes;
ggml_int8x16x4_t q3bytes;
uint16_t aux16[2];
int8_t * scales = (int8_t *)aux16;
@ -4783,11 +4881,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
for (int i = 0; i < nb; ++i) {
uint8x16x4_t q3h;
ggml_uint8x16x4_t q3h;
const uint8x8_t hbits = vld1_u8(x[i].hmask);
const uint8x16_t q3bits = vld1q_u8(x[i].qs);
const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
const uint16_t a = *(const uint16_t *)x[i].scales;
aux16[0] = a & 0x0f0f;
@ -5136,8 +5234,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t mzero = vdupq_n_s32(0);
#endif
int8x16x2_t q4bytes;
int8x16x2_t q8bytes;
ggml_int8x16x2_t q4bytes;
ggml_int8x16x2_t q8bytes;
float sumf = 0;
@ -5172,17 +5270,17 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/64; ++j) {
const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
#ifdef __ARM_FEATURE_DOTPROD
q8bytes = vld1q_s8_x2(q8); q8 += 32;
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
sumi1 += vaddvq_s32(p1) * scales[2*j+0];
q8bytes = vld1q_s8_x2(q8); q8 += 32;
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
@ -5190,7 +5288,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
sumi2 += vaddvq_s32(p2) * scales[2*j+1];
#else
q8bytes = vld1q_s8_x2(q8); q8 += 32;
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
@ -5199,7 +5297,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
q8bytes = vld1q_s8_x2(q8); q8 += 32;
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
@ -5514,8 +5612,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
float sumf = 0;
int8x16x2_t q4bytes;
int8x16x4_t q8bytes;
ggml_int8x16x2_t q4bytes;
ggml_int8x16x4_t q8bytes;
float sum_mins = 0.f;
@ -5536,10 +5634,10 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const float d = y[i].d * (float)x[i].d[0];
const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
#ifdef __ARM_FEATURE_DOTPROD
q8bytes = vld1q_s8_x4(q8);
q8bytes = ggml_vld1q_s8_x4(q8);
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
@ -5553,7 +5651,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
#else
q8bytes = vld1q_s8_x4(q8);
q8bytes = ggml_vld1q_s8_x4(q8);
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
@ -5787,7 +5885,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t mzero = vdupq_n_s32(0);
#endif
int8x16x4_t q5bytes;
ggml_int8x16x4_t q5bytes;
float sumf = 0;
@ -5817,16 +5915,16 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
uint8x16x2_t qhbits = vld1q_u8_x2(qh);
ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
uint8x16x4_t q5h;
ggml_uint8x16x4_t q5h;
int32_t sumi = 0;
for (int j = 0; j < QK_K/64; ++j) {
const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
@ -6220,8 +6318,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t mzero = vdupq_n_s32(0);
#endif
int8x16x4_t q5bytes;
uint8x16x4_t q5h;
ggml_int8x16x4_t q5bytes;
ggml_uint8x16x4_t q5h;
float sumf = 0;
@ -6236,8 +6334,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x8_t qhbits = vld1_u8(qh);
const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
@ -6513,8 +6611,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t mone = vdupq_n_u8(3);
int8x16x4_t q6bytes;
uint8x16x4_t q6h;
ggml_int8x16x4_t q6bytes;
ggml_uint8x16x4_t q6h;
for (int i = 0; i < nb; ++i) {
@ -6526,9 +6624,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const int8_t * restrict scale = x[i].scales;
const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
const int8x16_t scales = vld1q_s8(scale);
const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
const ggml_int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
@ -6540,9 +6638,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/128; ++j) {
uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
@ -6585,7 +6683,7 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
scale += 2;
#endif
q8bytes = vld1q_s8_x4(q8); q8 += 64;
q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
shifted = vshrq_n_u8(qhbits.val[0], 4);
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
@ -6989,8 +7087,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t mone = vdupq_n_u8(3);
int8x16x4_t q6bytes;
uint8x16x4_t q6h;
ggml_int8x16x4_t q6bytes;
ggml_uint8x16x4_t q6h;
for (int i = 0; i < nb; ++i) {
@ -7005,8 +7103,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
int32_t isum = 0;
uint8x16_t qhbits = vld1q_u8(qh);
uint8x16x2_t q6bits = vld1q_u8_x2(q6);
int8x16x4_t q8bytes = vld1q_s8_x4(q8);
ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
uint8x16_t shifted = vshrq_n_u8(qhbits, 2);

File diff suppressed because it is too large Load Diff

View File

@ -58,7 +58,8 @@
// {
// ...
//
// struct ggml_cgraph gf = ggml_build_forward(f);
// struct ggml_cgraph * gf = ggml_new_graph(ctx);
// ggml_build_forward_expand(gf, f);
//
// // set the input variable and parameter values
// ggml_set_f32(x, 2.0f);
@ -214,14 +215,13 @@
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
#define GGML_MAX_DIMS 4
#define GGML_MAX_NODES 16384
#define GGML_MAX_PARAMS 1024
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_SRC 6
#define GGML_MAX_NAME 64
#define GGML_MAX_OP_PARAMS 32
#define GGML_MAX_OP_PARAMS 64
#define GGML_DEFAULT_N_THREADS 4
#define GGML_DEFAULT_GRAPH_SIZE 2048
#if UINTPTR_MAX == 0xFFFFFFFF
#define GGML_MEM_ALIGN 4
#else
@ -245,7 +245,10 @@
do { \
if (!(x)) { \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
fflush(stderr); \
fflush(stdout); \
ggml_print_backtrace(); \
exit(1); \
} \
} while (0)
@ -400,13 +403,8 @@ extern "C" {
GGML_OP_ROPE_BACK,
GGML_OP_ALIBI,
GGML_OP_CLAMP,
GGML_OP_CONV_1D,
GGML_OP_CONV_1D_STAGE_0, // internal
GGML_OP_CONV_1D_STAGE_1, // internal
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_CONV_2D,
GGML_OP_CONV_2D_STAGE_0, // internal
GGML_OP_CONV_2D_STAGE_1, // internal
GGML_OP_IM2COL,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
@ -451,6 +449,7 @@ extern "C" {
GGML_UNARY_OP_GELU,
GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU,
GGML_UNARY_OP_LEAKY
};
enum ggml_object_type {
@ -531,37 +530,33 @@ extern "C" {
int n_threads;
// the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
int n_tasks[GGML_MAX_NODES];
// abort ggml_graph_compute when true
bool (*abort_callback)(void * data);
void * abort_callback_data;
};
// next prime after GGML_MAX_NODES
// #define GGML_GRAPH_HASHTABLE_SIZE 4099
// next prime after GGML_MAX_NODES * 2 (nodes + leafs)
// #define GGML_GRAPH_HASHTABLE_SIZE 8273
// #define GGML_GRAPH_HASHTABLE_SIZE 16411
#define GGML_GRAPH_HASHTABLE_SIZE 32771
enum ggml_cgraph_eval_order {
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
GGML_CGRAPH_EVAL_ORDER_COUNT
};
struct ggml_hash_set {
size_t size;
struct ggml_tensor ** keys;
};
// computation graph
struct ggml_cgraph {
int size;
int n_nodes;
int n_leafs;
struct ggml_tensor * nodes[GGML_MAX_NODES];
struct ggml_tensor * grads[GGML_MAX_NODES];
struct ggml_tensor * leafs[GGML_MAX_NODES];
struct ggml_tensor ** nodes;
struct ggml_tensor ** grads;
struct ggml_tensor ** leafs;
void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
struct ggml_hash_set visited_hash_table;
enum ggml_cgraph_eval_order order;
@ -571,8 +566,6 @@ extern "C" {
int64_t perf_time_us;
};
static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
// scratch buffer
struct ggml_scratch {
size_t offs;
@ -617,6 +610,8 @@ extern "C" {
GGML_API int64_t ggml_cycles(void);
GGML_API int64_t ggml_cycles_per_ms(void);
GGML_API void ggml_print_backtrace(void);
GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
@ -943,6 +938,10 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_leaky(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_relu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
@ -1326,8 +1325,13 @@ extern "C" {
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale);
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
@ -1337,8 +1341,17 @@ extern "C" {
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale);
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
// compute correction dims for YaRN RoPE scaling
void ggml_rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
// xPos RoPE, in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
@ -1358,8 +1371,13 @@ extern "C" {
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
float xpos_base,
bool xpos_down);
@ -1380,6 +1398,18 @@ extern "C" {
float min,
float max);
GGML_API struct ggml_tensor * ggml_im2col(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1,
bool is_2D);
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -1463,6 +1493,8 @@ extern "C" {
int s0, // stride
int p0); // padding
// the result will have 2*p0 padding for the first dimension
// and 2*p1 padding for the second dimension
GGML_API struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -1471,8 +1503,8 @@ extern "C" {
int k1,
int s0,
int s1,
int p0,
int p1);
float p0,
float p1);
// nearest interpolate
// used in stable-diffusion
@ -1713,19 +1745,22 @@ extern "C" {
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
// graph allocation in a context
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
GGML_API struct ggml_cgraph * ggml_graph_view (struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i0, int i1);
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
GGML_API size_t ggml_graph_overhead(void);
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
@ -1734,7 +1769,7 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
// print info and performance information for the graph
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
@ -1797,6 +1832,8 @@ extern "C" {
struct ggml_opt_params {
enum ggml_opt_type type;
size_t graph_size;
int n_threads;
// delta-based convergence test
@ -2008,6 +2045,7 @@ extern "C" {
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);

File diff suppressed because it is too large Load Diff

View File

@ -106,6 +106,14 @@ extern "C" {
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
};
enum llama_rope_scaling_type {
LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
LLAMA_ROPE_SCALING_NONE = 0,
LLAMA_ROPE_SCALING_LINEAR = 1,
LLAMA_ROPE_SCALING_YARN = 2,
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
};
typedef struct llama_token_data {
llama_token id; // token id
float logit; // log-odds of the token
@ -172,10 +180,16 @@ extern "C" {
uint32_t n_batch; // prompt processing maximum batch size
uint32_t n_threads; // number of threads to use for generation
uint32_t n_threads_batch; // number of threads to use for batch processing
int8_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency, 0 = from model
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
float yarn_ext_factor; // YaRN extrapolation mix factor, NaN = from model
float yarn_attn_factor; // YaRN magnitude scaling factor
float yarn_beta_fast; // YaRN low correction dim
float yarn_beta_slow; // YaRN high correction dim
uint32_t yarn_orig_ctx; // YaRN original context size
// Keep the booleans together to avoid misalignment during copy-by-value.
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
@ -287,6 +301,23 @@ extern "C" {
// Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
// Functions to access the model's GGUF metadata scalar values
// - The functions return the length of the string on success, or -1 on failure
// - The output string is always null-terminated and cleared on failure
// - GGUF array values are not supported by these functions
// Get metadata value as a string by key name
LLAMA_API int llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
// Get the number of metadata key/value pairs
LLAMA_API int llama_model_meta_count(const struct llama_model * model);
// Get metadata key name by index
LLAMA_API int llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
// Get metadata value as a string by index
LLAMA_API int llama_model_meta_val_str_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
// Get a string describing the model type
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
@ -503,6 +534,12 @@ extern "C" {
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int llama_add_bos_token(const struct llama_model * model);
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int llama_add_eos_token(const struct llama_model * model);
// codellama infill tokens
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle

View File

@ -33,6 +33,7 @@ struct train_state * init_train_state() {
state->opt = new struct ggml_opt_context;
state->opt->ctx = NULL;
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
state->opt->loss_after = 0.0f;
return state;
@ -1136,6 +1137,7 @@ void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train
fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
fprintf(stderr, " -ngl N, --n-gpu-layers N Number of model layers to offload to GPU (default %d)", params->n_gpu_layers);
fprintf(stderr, "\n");
}
@ -1355,6 +1357,17 @@ bool consume_common_train_arg(
return true;
}
params->adam_gclip = std::stof(argv[i]);
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params->n_gpu_layers = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
} else if (arg == "-h" || arg == "--help") {
params->print_usage = true;
return true;

View File

@ -9,6 +9,8 @@
#include "ggml.h"
#include "llama.h"
#define LLAMA_TRAIN_MAX_NODES 16384
typedef std::string mt19937_state;
struct train_state {