/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "LatinIME: jni: GGMLDictionary" #include "org_futo_inputmethod_latin_GGMLDictionary.h" #include // for memset() #include #include "defines.h" #include "dictionary/property/unigram_property.h" #include "dictionary/property/ngram_context.h" #include "dictionary/property/word_property.h" #include "dictionary/structure/dictionary_structure_with_buffer_policy_factory.h" #include "jni.h" #include "jni_common.h" #include "suggest/core/dictionary/dictionary.h" #include "suggest/core/result/suggestion_results.h" #include "suggest/core/suggest_options.h" #include "utils/char_utils.h" #include "utils/int_array_view.h" #include "utils/jni_data_utils.h" #include "utils/log_utils.h" #include "utils/profiler.h" #include "utils/time_keeper.h" #include "ggml/gpt_neox.h" #include "ggml/context.h" #include "ggml/common.h" #include namespace latinime { // TODO: Make use of proximityInfo int levenshtein(std::string a, std::string b) { int a_len = a.length(); int b_len = b.length(); // Initialize matrix of zeros std::vector> d(a_len + 1, std::vector(b_len + 1, 0)); // Initialize edges to incrementing integers for (int i = 1; i <= a_len; i++) d[i][0] = i; for (int j = 1; j <= b_len; j++) d[0][j] = j; // Calculate distance for (int i = 1; i <= a_len; i++) { for (int j = 1; j <= b_len; j++) { int cost = (a[i - 1] == b[j - 1]) ? 0 : 1; int delete_v = d[i - 1][j] + 1; int insert_v = d[i][j - 1] + 1; int substitute_v = d[i - 1][j - 1] + cost; d[i][j] = std::min(std::min(delete_v, insert_v), substitute_v); // Transposition (swap adjacent characters) if (i > 1 && j > 1 && a[i - 1] == b[j - 2] && a[i - 2] == b[j - 1]) d[i][j] = std::min(d[i][j], d[i - 2][j - 2] + cost); } } return d[a_len][b_len]; } class ProximityInfo; struct GGMLDictionaryState { int n_threads = 3; transformer_context t_context; std::vector logits; std::vector bad_logits; size_t mem_per_token = 0; gpt_neox_model model; gpt_vocab vocab; }; static jlong latinime_GGMLDictionary_open(JNIEnv *env, jclass clazz, jstring sourceDir, jlong dictOffset, jlong dictSize, jboolean isUpdatable) { PROF_INIT; PROF_TIMER_START(66); const jsize sourceDirUtf8Length = env->GetStringUTFLength(sourceDir); if (sourceDirUtf8Length <= 0) { AKLOGE("DICT: Can't get sourceDir string"); return 0; } char sourceDirChars[sourceDirUtf8Length + 1]; env->GetStringUTFRegion(sourceDir, 0, env->GetStringLength(sourceDir), sourceDirChars); sourceDirChars[sourceDirUtf8Length] = '\0'; GGMLDictionaryState *state = new GGMLDictionaryState(); std::string fname(sourceDirChars); bool result = gpt_neox_model_load(fname, state->model, state->vocab); if(!result) { AKLOGE("GGMLDict: Could not load model"); free(state); return 0; } for(int i=0; imodel.hparams.n_vocab; i++){ std::string token = state->vocab.id_to_token[i]; bool is_bad = token.empty(); int num_chars = 0; if(!is_bad) { for (char c: token) { // TODO: We should allow special symbols for programming, etc if (c == ',' || c == '.' || c == '(' || c == ')' || c == '?' || c == '!' || c == '"' || c == '\'' || c == '[' || c == ']') { is_bad = true; break; } if (((c >= 'a') && (c <= 'z')) || ((c >= 'A') && (c <= 'Z'))) num_chars++; } } is_bad = is_bad || num_chars == 0; if(is_bad) { state->bad_logits.emplace_back(i); } } PROF_TIMER_END(66); return reinterpret_cast(state); } static void latinime_GGMLDictionary_close(JNIEnv *env, jclass clazz, jlong dict) { GGMLDictionaryState *state = reinterpret_cast(dict); if(state == nullptr) return; delete state; } static void latinime_GGMLDictionary_getSuggestions(JNIEnv *env, jclass clazz, jlong dict, jlong proximityInfo, jstring context, jstring partialWord, jobjectArray outPredictions, jintArray outProbabilities) { GGMLDictionaryState *state = reinterpret_cast(dict); ProximityInfo *pInfo = reinterpret_cast(proximityInfo); const char* cstr = env->GetStringUTFChars(context, nullptr); std::string contextString(cstr); env->ReleaseStringUTFChars(context, cstr); std::string partialWordString; if(partialWord != nullptr){ const char* pwstr = env->GetStringUTFChars(partialWord, nullptr); partialWordString = std::string(pwstr); env->ReleaseStringUTFChars(partialWord, pwstr); } token_sequence next_context = gpt_tokenize(state->vocab, contextString); //truncate to front of the prompt if its too long int32_t nctx = state->model.hparams.n_ctx; if (next_context.size() + 2 > nctx) { int offset = next_context.size() - nctx + 2; next_context = std::vector(next_context.begin() + offset, next_context.end()); } auto fastforward_info = transformer_context_fastforward(state->t_context, next_context); token_sequence &embd_inp = fastforward_info.first; int n_past = fastforward_info.second; if(embd_inp.empty()) return; AKLOGI("npast = %d, size(embd) = %d\n", n_past, (int)embd_inp.size()); gpt_neox_eval(state->model, state->n_threads, n_past, embd_inp, state->logits, state->mem_per_token); transformer_context_apply(state->t_context, fastforward_info); int topid = std::min_element(state->logits.begin(),state->logits.end())-state->logits.begin(); float zeroValue = (state->logits[topid] < 0 ? state->logits[topid] : 0); for(int bad_id : state->bad_logits) { state->logits[bad_id] = zeroValue; } // Get a vector of index and value pairs std::vector> index_value; for (int i = 0; i < state->logits.size(); i++) { index_value.emplace_back(state->logits[i], i); } // Sort the index_value vector in descending order of value std::sort(index_value.begin(), index_value.end(), [](const std::pair& a, const std::pair& b) { return a.first > b.first; // Descending }); // Adjust probabilities according to the partial word if(!partialWordString.empty()) { // Consider only the top 5000 predictions index_value.resize(5000); // Adjust probabilities according to levenshtein distance for(auto &v : index_value) { int token_id = v.second; std::string token = state->vocab.id_to_token[token_id]; int min_length = std::min(token.length(), partialWordString.length()); float distance = (float)levenshtein(token.substr(0, min_length), partialWordString.substr(0, min_length)); // Add a penalty for when the token is too short if(token.length() < partialWordString.length()) { distance += (partialWordString.length() - token.length()) * 2.0f; } // this assumes the probabilities are all positive v.first = v.first / (1.0f + distance); } // Sort the index_value vector in descending order of value again std::sort(index_value.begin(), index_value.end(), [](const std::pair& a, const std::pair& b) { return a.first > b.first; // Descending }); } size_t size = env->GetArrayLength(outPredictions); // Get the array elements jint *probsArray = env->GetIntArrayElements(outProbabilities, nullptr); // Output predictions for next word for (int i = 0; i < std::min(size, index_value.size()); i++) { int token_id = index_value[i].second; if (i < 8) { AKLOGI(" - prediction[%d]: %s", i, state->vocab.id_to_token[token_id].c_str()); } jstring jstr = env->NewStringUTF(state->vocab.id_to_token[token_id].c_str()); env->SetObjectArrayElement(outPredictions, i, jstr); probsArray[i] = (int)(index_value[i].first * 100000.0f); env->DeleteLocalRef(jstr); } env->ReleaseIntArrayElements(outProbabilities, probsArray, 0); } static const JNINativeMethod sMethods[] = { { const_cast("openNative"), const_cast("(Ljava/lang/String;JJZ)J"), reinterpret_cast(latinime_GGMLDictionary_open) }, { const_cast("closeNative"), const_cast("(J)V"), reinterpret_cast(latinime_GGMLDictionary_close) }, { const_cast("getSuggestionsNative"), const_cast("(JJLjava/lang/String;Ljava/lang/String;[Ljava/lang/String;[I)V"), reinterpret_cast(latinime_GGMLDictionary_getSuggestions) } }; int register_GGMLDictionary(JNIEnv *env) { const char *const kClassPathName = "org/futo/inputmethod/latin/GGMLDictionary"; return registerNativeMethods(env, kClassPathName, sMethods, NELEMS(sMethods)); } } // namespace latinime