futokb/native/jni/org_futo_inputmethod_latin_xlm_AdapterTrainer.cpp
2023-11-25 09:13:50 +02:00

207 lines
7.1 KiB
C++

//
// Created by alex on 11/7/23.
//
#include <string>
#include "org_futo_inputmethod_latin_xlm_AdapterTrainer.h"
#include "defines.h"
#include "jni_common.h"
#include "ggml/finetune.h"
#include "sentencepiece/sentencepiece_processor.h"
#include "jni_utils.h"
namespace latinime {
struct AdapterTrainerState {
std::string baseModelPath;
std::string tokenizerPath;
std::string loraCachePath;
std::string outputModelPath;
float outputScale;
sentencepiece::SentencePieceProcessor spm;
struct train_params params;
static void OnLossCallback(void *userdata, float loss) {
auto *state = reinterpret_cast<AdapterTrainerState *>(userdata);
state->OnLoss(loss);
}
static void OnProgressCallback(void *userdata, float progress) {
auto *state = reinterpret_cast<AdapterTrainerState *>(userdata);
state->OnProgress(progress);
}
JNIEnv *env;
jobject callbackObject;
jmethodID lossMethodId;
jmethodID progressMethodId;
void OnLoss(float loss) const {
env->CallVoidMethod(callbackObject, lossMethodId, loss);
}
void OnProgress(float progress) const {
env->CallVoidMethod(callbackObject, progressMethodId, progress);
}
bool Initialize() {
params = get_default_train_params();
params.common.fn_train_data = "";
params.common.fn_checkpoint_in = "";
params.common.fn_checkpoint_out = "";
params.fn_model_base = baseModelPath.c_str();
params.fn_lora_out = loraCachePath.c_str();
params.common.fill_with_next_samples = true;
params.common.n_threads = 6;
params.common.n_gradient_accumulation = 2;
params.common.n_batch = 2;
params.common.n_ctx = 64;
params.common.sample_random_offsets = true;
params.common.warmup = 10;
params.common.n_epochs = 1;
params.common.adam_alpha = 1e-3;
params.common.adam_n_iter = 128;
// Increasing/decreasing this doesn't appear to significantly affect training time
params.lora_r = 16;
params.lora_alpha = 16;
params.common.callbacks.userdata = this;
params.common.callbacks.loss = AdapterTrainerState::OnLossCallback;
params.common.callbacks.progress = AdapterTrainerState::OnProgressCallback;
// TODO: Check model path valid / try to pre-load resources?
if(!spm.Load(tokenizerPath).ok()){
AKLOGE("Failed to load tokenizer at path %s!", tokenizerPath.c_str());
return false;
}
return true;
}
void AddTrainingExample(const std::string &example) {
std::vector<llama_token> result = spm.EncodeAsIds(example);
params.training_data.push_back(result);
}
int Train() const {
return finetune_train(params);
}
};
static jlong xlm_AdapterTrainer_open(JNIEnv *env, jclass clazz, jstring baseModelPathStr, jstring tokenizerPathStr, jstring loraCacheStr, jstring outputModelPathStr, float outputScale) {
auto *state = new AdapterTrainerState();
state->baseModelPath = jstring2string(env, baseModelPathStr);
state->tokenizerPath = jstring2string(env, tokenizerPathStr);
state->loraCachePath = jstring2string(env, loraCacheStr);
state->outputModelPath = jstring2string(env, outputModelPathStr);
state->outputScale = outputScale;
state->env = env;
if(!state->Initialize()) {
delete state;
return 0;
}
return reinterpret_cast<jlong>(state);
}
static void xlm_AdapterTrainer_close(JNIEnv *env, jclass clazz, jlong statePtr) {
auto *state = reinterpret_cast<AdapterTrainerState *>(statePtr);
if(state == nullptr) return;
delete state;
}
static void xlm_AdapterTrainer_addExample(JNIEnv *env, jclass clazz, jlong statePtr, jstring exampleStr) {
auto *state = reinterpret_cast<AdapterTrainerState *>(statePtr);
state->AddTrainingExample(jstring2string(env, exampleStr));
}
// TODO: Callback for progress
static void xlm_AdapterTrainer_train(JNIEnv *env, jobject instance, jlong statePtr) {
jclass clazz = env->GetObjectClass(instance);
ASSERT(clazz);
jmethodID progressMethodId = env->GetMethodID(clazz, "emitProgress", "(F)V");
jmethodID lossMethodId = env->GetMethodID(clazz, "emitLoss", "(F)V");
ASSERT(progressMethodId);
ASSERT(lossMethodId);
auto *state = reinterpret_cast<AdapterTrainerState *>(statePtr);
state->env = env;
state->lossMethodId = lossMethodId;
state->progressMethodId = progressMethodId;
state->callbackObject = instance;
int result = state->Train();
if(result != 0) {
AKLOGE("train returned with non-zero code %d", result);
return;
}
// Apply LoRA
llama_model_params model_params = llama_model_default_params();
model_params.use_mmap = false;
llama_model *model = llama_load_model_from_file(state->baseModelPath.c_str(), model_params);
if(model == nullptr) {
AKLOGE("failed to load model for exporting LoRA");
return;
}
int err = llama_model_apply_lora_from_file(
model,
state->loraCachePath.c_str(),
state->outputScale,
nullptr,
4
);
if(err != 0) {
AKLOGE("Failed to apply lora: %d", err);
return;
}
int status = save_llama_model_file(
state->outputModelPath.c_str(),
state->baseModelPath.c_str(),
model
);
if(status != 0) {
AKLOGE("Failed to save model! %d", status);
return;
}
}
static const JNINativeMethod sMethods[] = {
{
const_cast<char *>("openNative"),
const_cast<char *>("(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;F)J"),
reinterpret_cast<void *>(xlm_AdapterTrainer_open)
},
{
const_cast<char *>("closeNative"),
const_cast<char *>("(J)V"),
reinterpret_cast<void *>(xlm_AdapterTrainer_close)
},
{
const_cast<char *>("addExample"),
const_cast<char *>("(JLjava/lang/String;)V"),
reinterpret_cast<void *>(xlm_AdapterTrainer_addExample)
},
{
const_cast<char *>("train"),
const_cast<char *>("(J)V"),
reinterpret_cast<void *>(xlm_AdapterTrainer_train)
},
};
int register_AdapterTrainer(JNIEnv *env) {
const char *const kClassPathName = "org/futo/inputmethod/latin/xlm/AdapterTrainer";
return registerNativeMethods(env, kClassPathName, sMethods, NELEMS(sMethods));
}
}