mirror of
https://gitlab.futo.org/keyboard/latinime.git
synced 2024-09-28 14:54:30 +01:00
812 lines
28 KiB
C++
812 lines
28 KiB
C++
#define LOG_TAG "LatinIME: jni: LanguageModel"
|
|
|
|
#include "org_futo_inputmethod_latin_xlm_LanguageModel.h"
|
|
|
|
#include <cstring> // for memset()
|
|
#include <vector>
|
|
|
|
#include "jni.h"
|
|
#include "jni_common.h"
|
|
#include "ggml/LanguageModel.h"
|
|
#include "defines.h"
|
|
#include "suggest/core/layout/proximity_info.h"
|
|
|
|
#define EPS 0.0001
|
|
#define TIME_START(name) const int64_t start_##name = ggml_time_us();
|
|
#define TIME_END(name) const int64_t end_##name = ggml_time_us(); \
|
|
const int64_t time_taken_##name = (end_##name - start_##name) / 1000L; \
|
|
AKLOGI("%s: Time taken by %s: %d ms\n", __func__, #name, (int)time_taken_##name);
|
|
|
|
static std::string trim(const std::string &s) {
|
|
auto start = s.begin();
|
|
while (start != s.end() && std::isspace(*start)) {
|
|
start++;
|
|
}
|
|
|
|
auto end = s.end();
|
|
do {
|
|
end--;
|
|
} while (std::distance(start, end) > 0 && std::isspace(*end));
|
|
|
|
return {start, end + 1};
|
|
}
|
|
|
|
template<typename T>
|
|
bool sortProbabilityPairDescending(const std::pair<float, T>& a, const std::pair<float, T>& b) {
|
|
return a.first > b.first;
|
|
}
|
|
|
|
template<typename T>
|
|
static inline void sortProbabilityPairVectorDescending(std::vector<std::pair<float, T>> &vec) {
|
|
std::sort(vec.begin(), vec.end(), sortProbabilityPairDescending<T>);
|
|
}
|
|
|
|
template<typename T>
|
|
static inline void sortProbabilityPairVectorDescending(std::vector<std::pair<float, T>> &vec, int partial) {
|
|
std::partial_sort(vec.begin(), vec.begin() + partial, vec.end(), sortProbabilityPairDescending<T>);
|
|
}
|
|
|
|
typedef struct potential_sequence_data {
|
|
token_sequence tokens;
|
|
llama_seq_id seq_id;
|
|
} potential_sequence_data;
|
|
|
|
// P = P(tokens[0]) * P(tokens[1]) * [...]
|
|
typedef std::pair<float, potential_sequence_data> potential_sequence;
|
|
|
|
static void softmax(float * input, size_t input_len) {
|
|
float m = -INFINITY;
|
|
for (size_t i = 0; i < input_len; i++) {
|
|
if (input[i] > m) {
|
|
m = input[i];
|
|
}
|
|
}
|
|
|
|
float sum = 0.0;
|
|
for (size_t i = 0; i < input_len; i++) {
|
|
sum += expf(input[i] - m);
|
|
}
|
|
|
|
float offset = m + logf(sum);
|
|
for (size_t i = 0; i < input_len; i++) {
|
|
input[i] = expf(input[i] - offset);
|
|
}
|
|
}
|
|
|
|
#define NUM_TOKEN_MIX 4
|
|
struct TokenMix {
|
|
float x;
|
|
float y;
|
|
struct {
|
|
float weight;
|
|
llama_token token;
|
|
} mixes[NUM_TOKEN_MIX];
|
|
};
|
|
|
|
|
|
struct DecodeResult {
|
|
int logits_head;
|
|
int size;
|
|
};
|
|
|
|
struct LanguageModelState {
|
|
LanguageModel *model;
|
|
|
|
struct {
|
|
int SPACE;
|
|
|
|
std::vector<int> SAMPLING_BAD_TOKENS;
|
|
|
|
int XBU;
|
|
int XBC;
|
|
int XEC;
|
|
|
|
int XC0_SWIPE_MODE;
|
|
|
|
int LETTERS_TO_IDS[26];
|
|
} specialTokens;
|
|
|
|
bool Initialize(const std::string &paths){
|
|
model = LlamaAdapter::createLanguageModel(paths);
|
|
if(!model) {
|
|
AKLOGE("GGMLDict: Could not load model");
|
|
return false;
|
|
}
|
|
|
|
specialTokens.SPACE = 560; //model->tokenToId("▁");
|
|
|
|
specialTokens.SAMPLING_BAD_TOKENS = {
|
|
// TODO: Don't hardcode these
|
|
// BOS, EOS, etc and some whitespace (linebreak, tab, carriage return)
|
|
0, 1, 2, 3, 126, 127, 128, 129, 130
|
|
};
|
|
|
|
for(int i = model->tokenToId(".▁"); i < model->tokenToId("0"); i++) {
|
|
// Specifically allow the standalone dot for acronyms such as "U.S."
|
|
// otherwise this turns into a space and we get just a nonsensical standalone "U" or similar
|
|
// TODO: Since ". " is still blocked, we get "U.S" instead of the expected "U.S. "
|
|
if(i == model->tokenToId(".")) continue;
|
|
|
|
specialTokens.SAMPLING_BAD_TOKENS.emplace_back(i);
|
|
}
|
|
for(int i = model->tokenToId(":"); i <= model->tokenToId("~"); i++) {
|
|
specialTokens.SAMPLING_BAD_TOKENS.emplace_back(i);
|
|
}
|
|
|
|
specialTokens.XBU = model->tokenToId("<XBU>");
|
|
specialTokens.XBC = model->tokenToId("<XBC>");
|
|
specialTokens.XEC = model->tokenToId("<XEC>");
|
|
specialTokens.XC0_SWIPE_MODE = model->tokenToId("<XC0>");
|
|
specialTokens.LETTERS_TO_IDS[0] = model->tokenToId("<CHAR_A>");
|
|
|
|
ASSERT(specialTokens.XBU != 0);
|
|
ASSERT(specialTokens.XBC != 0);
|
|
ASSERT(specialTokens.XEC != 0);
|
|
ASSERT(specialTokens.LETTERS_TO_IDS[0] != 0);
|
|
|
|
for(int i = 1; i < 26; i++) {
|
|
specialTokens.LETTERS_TO_IDS[i] = specialTokens.LETTERS_TO_IDS[0] + i;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void transform_logits(float *logits, size_t n_vocab, bool allow_space, bool allow_correction_token){
|
|
softmax(logits, n_vocab);
|
|
|
|
logits[specialTokens.XBU] = -999.0f;
|
|
logits[specialTokens.XBC] = -999.0f;
|
|
if(!allow_correction_token)
|
|
logits[specialTokens.XEC] = -999.0f;
|
|
|
|
for(int x : specialTokens.LETTERS_TO_IDS) {
|
|
logits[x] = -999.0f;
|
|
}
|
|
|
|
for(int x : specialTokens.SAMPLING_BAD_TOKENS) {
|
|
logits[specialTokens.SPACE] += std::max(0.0f, logits[x]);
|
|
logits[x] = -999.0f;
|
|
}
|
|
|
|
if(!allow_space) {
|
|
logits[specialTokens.SPACE] = -999.0f;
|
|
}
|
|
}
|
|
|
|
std::vector<TokenMix> past_mixes = { };
|
|
int GetCachedMixAmount(const std::vector<TokenMix> &mixes) {
|
|
TIME_START(GetcachedMixAmount)
|
|
int i = 0;
|
|
for(i = 0; i < std::min(past_mixes.size(), mixes.size()); i++) {
|
|
if(std::abs(past_mixes[i].x - mixes[i].x) >= EPS) break;
|
|
if(std::abs(past_mixes[i].y - mixes[i].y) >= EPS) break;
|
|
}
|
|
|
|
TIME_END(GetcachedMixAmount)
|
|
|
|
return i;
|
|
}
|
|
|
|
DecodeResult DecodePromptAndMixes(const token_sequence &prompt, const std::vector<TokenMix> &mixes) {
|
|
TIME_START(PromptDecode)
|
|
llama_context *ctx = ((LlamaAdapter *) model->adapter)->context;
|
|
llama_batch batch = ((LlamaAdapter *) model->adapter)->batch;
|
|
LlamaAdapter *llamaAdapter = ((LlamaAdapter *)model->adapter);
|
|
|
|
size_t n_embd = llama_n_embd(llama_get_model(ctx));
|
|
size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
|
|
auto prompt_ff = transformer_context_fastforward(model->transformerContext, prompt, !mixes.empty());
|
|
|
|
//AKLOGI("prompt_ff size = %d, n_past = %d", prompt_ff.first.size(), prompt_ff.second);
|
|
|
|
batch.n_tokens = prompt_ff.first.size();
|
|
if(batch.n_tokens > 0) {
|
|
for (int i = 0; i < prompt_ff.first.size(); i++) {
|
|
batch.token[i] = prompt_ff.first[i];
|
|
batch.pos[i] = prompt_ff.second + i;
|
|
batch.seq_id[i][0] = 0;
|
|
batch.n_seq_id[i] = 1;
|
|
batch.logits[i] = false;
|
|
}
|
|
|
|
batch.logits[prompt_ff.first.size() - 1] = mixes.empty();
|
|
|
|
|
|
llama_kv_cache_seq_rm(ctx, 0, prompt_ff.second, -1);
|
|
|
|
if (llama_decode(ctx, batch) != 0) {
|
|
AKLOGE("llama_decode() failed");
|
|
return {};
|
|
}
|
|
} else {
|
|
AKLOGI("No need to recompute prompt, proceeding to mixes");
|
|
}
|
|
|
|
transformer_context_apply(model->transformerContext, prompt_ff);
|
|
TIME_END(PromptDecode)
|
|
|
|
TIME_START(EmbedMixing)
|
|
int size = prompt.size();
|
|
int head = prompt_ff.first.size() - 1;
|
|
|
|
std::vector<float> embeds;
|
|
|
|
bool useEncoder = !llamaAdapter->encoder_weight.empty();
|
|
AKLOGI("DecodePromptAndMixes: useEncoder=%d", useEncoder);
|
|
|
|
for(auto &mix : mixes) {
|
|
|
|
int num_added = 0;
|
|
|
|
std::vector<float> mix_f(n_embd, 0.0f);
|
|
|
|
if(useEncoder) {
|
|
num_added = 1;
|
|
|
|
for(size_t i=0; i<n_embd; i++) {
|
|
mix_f[i] = llamaAdapter->encoder_bias[i]
|
|
+ llamaAdapter->encoder_weight[i*2]*mix.x
|
|
+ llamaAdapter->encoder_weight[i*2 + 1]*mix.y;
|
|
}
|
|
|
|
//AKLOGI("DEBUG: pos %.4f %.4f got this: [%.4f %.4f %.4f %.4f %.4f %.4f %.4f ...",
|
|
// mix.x, mix.y,
|
|
// mix_f[0], mix_f[1], mix_f[2], mix_f[3], mix_f[4], mix_f[5], mix_f[6]);
|
|
} else {
|
|
for (auto &t: mix.mixes) {
|
|
if (t.weight < EPS) break;
|
|
|
|
float *src = ((LlamaAdapter *) model->adapter)->embeddings.data() +
|
|
(t.token * n_embd);
|
|
float weight = t.weight;
|
|
|
|
for (size_t i = 0; i < n_embd; i++) {
|
|
mix_f[i] += src[i] * weight;
|
|
}
|
|
|
|
num_added++;
|
|
}
|
|
}
|
|
|
|
if(num_added == 0){
|
|
AKLOGE("Somehow a token mix had 0 weight for everything");
|
|
ASSERT(false);
|
|
}
|
|
|
|
embeds.insert(embeds.end(), mix_f.begin(), mix_f.end());
|
|
size++;
|
|
}
|
|
TIME_END(EmbedMixing)
|
|
|
|
TIME_START(CachedMixAmount)
|
|
int n_tokens = int32_t(mixes.size());
|
|
int n_past = GetCachedMixAmount(mixes);
|
|
past_mixes = mixes;
|
|
|
|
if(!prompt_ff.first.empty()) n_past = 0; // We have to recompute embeds completely if prompt changed
|
|
llama_kv_cache_seq_rm(ctx, 0, prompt.size() + n_past, -1);
|
|
TIME_END(CachedMixAmount)
|
|
|
|
if(!embeds.empty()) {
|
|
TIME_START(DecodeEmbeds)
|
|
// TODO: This is only processing one embd at a time, increasing n_tokens doesn't seem to work
|
|
for(int h = n_past; h < n_tokens; h++ ) {
|
|
llama_batch embd_batch = {
|
|
1,
|
|
|
|
nullptr,
|
|
embeds.data() + h*n_embd,
|
|
batch.pos,
|
|
batch.n_seq_id,
|
|
batch.seq_id,
|
|
batch.logits,
|
|
|
|
batch.all_pos_0,
|
|
batch.all_pos_1,
|
|
batch.all_seq_id
|
|
};
|
|
|
|
batch.pos[0] = prompt.size() + h;
|
|
batch.seq_id[0][0] = 0;
|
|
batch.n_seq_id[0] = 1;
|
|
batch.logits[0] = false;
|
|
|
|
if (llama_decode(ctx, embd_batch) != 0) {
|
|
AKLOGE("llama_decode() with embeds failed");
|
|
return {};
|
|
}
|
|
}
|
|
TIME_END(DecodeEmbeds)
|
|
|
|
TIME_START(DecodeXBC)
|
|
|
|
// We always force an XBC token after
|
|
size += 1;
|
|
batch.n_tokens = 1;
|
|
batch.token[0] = specialTokens.XBC;
|
|
batch.seq_id[0][0] = 0;
|
|
batch.n_seq_id[0] = 1;
|
|
batch.logits[0] = true;
|
|
batch.pos[0] = prompt.size() + n_tokens;
|
|
head = 0;
|
|
|
|
if (llama_decode(ctx, batch) != 0) {
|
|
AKLOGE("llama_decode() for XBC failed");
|
|
return {};
|
|
}
|
|
|
|
TIME_END(DecodeXBC)
|
|
|
|
ASSERT(size == prompt.size() + n_tokens + 1);
|
|
ASSERT(size == prompt.size() + (embeds.size() / n_embd) + 1);
|
|
} else {
|
|
ASSERT(size == prompt.size());
|
|
ASSERT(head == prompt_ff.first.size() - 1);
|
|
}
|
|
|
|
AKLOGI("-- Decode");
|
|
AKLOGI("First we processed the prompt (%d):", prompt_ff.first.size());
|
|
for(auto t : prompt) {
|
|
AKLOGI(" - [%s]", model->getToken(t));
|
|
}
|
|
AKLOGI("Then %d embeds (cached %d)", embeds.size(), n_past);
|
|
AKLOGI("The final size is %d and head is %d", size, head);
|
|
|
|
TIME_START(FinishRm)
|
|
|
|
llama_kv_cache_seq_rm(ctx, 0, size, -1);
|
|
|
|
TIME_END(FinishRm)
|
|
return {
|
|
head,
|
|
size
|
|
};
|
|
}
|
|
|
|
std::vector<std::pair<float, token_sequence>> Sample(DecodeResult decodeResult, int n_results) {
|
|
llama_context *ctx = ((LlamaAdapter *) model->adapter)->context;
|
|
llama_batch batch = ((LlamaAdapter *) model->adapter)->batch;
|
|
|
|
size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
|
|
std::vector<potential_sequence> sequences;
|
|
|
|
bool allow_correction_token = decodeResult.logits_head == 0;
|
|
|
|
float *logits = llama_get_logits_ith(ctx, decodeResult.logits_head);
|
|
transform_logits(logits, n_vocab, false, allow_correction_token);
|
|
|
|
std::vector<std::pair<float, int>> index_value;
|
|
index_value.clear();
|
|
for (size_t i = 0; i < n_vocab; i++) {
|
|
index_value.emplace_back(logits[i], i);
|
|
}
|
|
|
|
sortProbabilityPairVectorDescending(index_value, n_results);
|
|
|
|
for (int i = 0; i < n_results; i++) {
|
|
sequences.emplace_back(
|
|
index_value[i].first,
|
|
potential_sequence_data {
|
|
{index_value[i].second},
|
|
i
|
|
}
|
|
);
|
|
}
|
|
|
|
for (auto &sequence: sequences) {
|
|
if (sequence.second.seq_id == 0) continue;
|
|
|
|
llama_kv_cache_seq_cp(ctx, 0, sequence.second.seq_id, 0, decodeResult.size);
|
|
}
|
|
|
|
std::vector<potential_sequence> next_sequences;
|
|
|
|
std::vector<std::pair<float, token_sequence>> outputs;
|
|
|
|
for(int tok=0; tok<10; tok++) {
|
|
next_sequences.clear();
|
|
for (auto sequence: std::move(sequences)) {
|
|
int next_token = sequence.second.tokens[sequence.second.tokens.size() - 1];
|
|
|
|
// Check if this is the end of correction
|
|
if (next_token == specialTokens.XEC) {
|
|
token_sequence resulting_tokens = std::move(sequence.second.tokens);
|
|
resulting_tokens.resize(resulting_tokens.size() - 1);
|
|
outputs.emplace_back(sequence.first, resulting_tokens);
|
|
continue;
|
|
}
|
|
|
|
// Check if this is the end of a word
|
|
std::string token = model->getToken(next_token);
|
|
if (token.size() >= 3 && (token[token.size() - 1] == '\x81') &&
|
|
(token[token.size() - 2] == '\x96') && token[token.size() - 3] == '\xe2') {
|
|
outputs.emplace_back(sequence.first, std::move(sequence.second.tokens));
|
|
continue;
|
|
}
|
|
|
|
next_sequences.emplace_back(sequence);
|
|
}
|
|
|
|
sequences = next_sequences;
|
|
next_sequences.clear();
|
|
|
|
size_t remaining_count = n_results - outputs.size();
|
|
batch.n_tokens = 0;
|
|
|
|
//for(int i=0; i<batch.n_tokens; i++) batch.logits[i] = false;
|
|
for (auto &sequence: sequences) {
|
|
batch.token[batch.n_tokens] = sequence.second.tokens[sequence.second.tokens.size() - 1];
|
|
batch.pos[batch.n_tokens] = decodeResult.size + (sequence.second.tokens.size() - 1);
|
|
batch.seq_id[batch.n_tokens][0] = sequence.second.seq_id;
|
|
batch.n_seq_id[batch.n_tokens] = 1;
|
|
batch.logits[batch.n_tokens] = true;
|
|
|
|
batch.n_tokens += 1;
|
|
}
|
|
|
|
ASSERT(batch.n_tokens == remaining_count); // usually 3
|
|
|
|
if (batch.n_tokens == 0) {
|
|
break;
|
|
}
|
|
|
|
llama_decode(ctx, batch);
|
|
|
|
for (int seq = 0; seq < remaining_count; seq++) {
|
|
const potential_sequence &parent_seq = sequences[seq];
|
|
logits = llama_get_logits_ith(ctx, seq);
|
|
transform_logits(logits, n_vocab, true, allow_correction_token);
|
|
|
|
index_value.clear();
|
|
for (size_t i = 0; i < n_vocab; i++) {
|
|
index_value.emplace_back(logits[i], i);
|
|
}
|
|
|
|
sortProbabilityPairVectorDescending(index_value, remaining_count);
|
|
|
|
for (size_t i = 0; i < remaining_count; i++) {
|
|
token_sequence new_sequence = parent_seq.second.tokens;
|
|
new_sequence.push_back(index_value[i].second);
|
|
|
|
if (index_value[i].first > 1.0f || index_value[i].first < 0.0f) {
|
|
AKLOGE("Expected index_value to be probability [%.2f]",
|
|
index_value[i].first);
|
|
}
|
|
|
|
if (sequences[i].first > 1.0f || sequences[i].first < 0.0f) {
|
|
AKLOGE("Expected sequences value to be probability [%.2f]",
|
|
sequences[i].first);
|
|
}
|
|
|
|
next_sequences.emplace_back(
|
|
index_value[i].first * sequences[i].first,
|
|
potential_sequence_data{
|
|
new_sequence,
|
|
parent_seq.second.seq_id
|
|
}
|
|
);
|
|
}
|
|
}
|
|
|
|
sortProbabilityPairVectorDescending(next_sequences, remaining_count);
|
|
next_sequences.resize(remaining_count);
|
|
sequences.clear();
|
|
|
|
// In some cases we may have picked a sequence from the same parent sequence
|
|
// We must re-assign the seq_id
|
|
int seq_id_use_count[n_results];
|
|
for (int i = 0; i < n_results; i++) seq_id_use_count[i] = 0;
|
|
|
|
for (auto &seq: next_sequences) seq_id_use_count[seq.second.seq_id] += 1;
|
|
|
|
for (auto &seq: next_sequences) {
|
|
if (seq_id_use_count[seq.second.seq_id] > 1) {
|
|
int old_seq_id = seq.second.seq_id;
|
|
|
|
int new_seq_id = -1;
|
|
for (int i = 0; i < n_results; i++) {
|
|
if (seq_id_use_count[i] == 0) {
|
|
new_seq_id = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (new_seq_id == -1) {
|
|
AKLOGE("Couldn't find an empty sequence id to use. This should never happen.");
|
|
return {};
|
|
}
|
|
|
|
seq_id_use_count[old_seq_id]--;
|
|
seq_id_use_count[new_seq_id]++;
|
|
|
|
llama_kv_cache_seq_cp(
|
|
ctx,
|
|
old_seq_id,
|
|
new_seq_id,
|
|
0, // could start from prompt.size()
|
|
decodeResult.size + (seq.second.tokens.size() - 1)
|
|
);
|
|
|
|
seq.second.seq_id = new_seq_id;
|
|
}
|
|
}
|
|
|
|
sequences = next_sequences;
|
|
}
|
|
|
|
for (int i = 1; i < n_results; i++) {
|
|
llama_kv_cache_seq_rm(ctx, i, 0, -1);
|
|
}
|
|
|
|
return outputs;
|
|
}
|
|
|
|
std::vector<std::pair<float, std::string>> PredictNextWord(const std::string &context) {
|
|
token_sequence next_context = model->tokenize(trim(context) + " ");
|
|
next_context.insert(next_context.begin(), 1); // BOS
|
|
|
|
auto decoding_result = DecodePromptAndMixes(next_context, { });
|
|
auto results = Sample(decoding_result, 3);
|
|
|
|
std::vector<std::pair<float, std::string>> str_results;
|
|
for(const auto& result : results) {
|
|
str_results.emplace_back(result.first, model->decode(result.second));
|
|
}
|
|
|
|
return str_results;
|
|
}
|
|
|
|
std::vector<std::pair<float, std::string>> PredictCorrection(const std::string &context, std::string &word, const std::vector<TokenMix> &mixes, bool swipe_mode) {
|
|
token_sequence next_context;
|
|
if(context.length() != 0) {
|
|
next_context = model->tokenize(trim(context) + " ");
|
|
}
|
|
|
|
next_context.insert(next_context.begin(), 1); // BOS
|
|
next_context.push_back(specialTokens.XBU);
|
|
|
|
if(swipe_mode) {
|
|
next_context.push_back(specialTokens.XC0_SWIPE_MODE);
|
|
}
|
|
|
|
auto decoding_result = DecodePromptAndMixes(next_context, mixes);
|
|
auto results = Sample(decoding_result, 3);
|
|
|
|
std::vector<std::pair<float, std::string>> str_results;
|
|
for(const auto& result : results) {
|
|
str_results.emplace_back(result.first, model->decode(result.second));
|
|
}
|
|
|
|
return str_results;
|
|
}
|
|
};
|
|
|
|
namespace latinime {
|
|
static jlong xlm_LanguageModel_open(JNIEnv *env, jclass clazz, jstring modelDir) {
|
|
AKLOGI("open LM");
|
|
const jsize sourceDirUtf8Length = env->GetStringUTFLength(modelDir);
|
|
if (sourceDirUtf8Length <= 0) {
|
|
AKLOGE("DICT: Can't get sourceDir string");
|
|
return 0;
|
|
}
|
|
char sourceDirChars[sourceDirUtf8Length + 1];
|
|
env->GetStringUTFRegion(modelDir, 0, env->GetStringLength(modelDir), sourceDirChars);
|
|
sourceDirChars[sourceDirUtf8Length] = '\0';
|
|
|
|
LanguageModelState *state = new LanguageModelState();
|
|
|
|
if(!state->Initialize(sourceDirChars)) {
|
|
delete state;
|
|
return 0;
|
|
}
|
|
|
|
return reinterpret_cast<jlong>(state);
|
|
}
|
|
|
|
static void xlm_LanguageModel_close(JNIEnv *env, jclass clazz, jlong statePtr) {
|
|
LanguageModelState *state = reinterpret_cast<LanguageModelState *>(statePtr);
|
|
if(state == nullptr) return;
|
|
delete state;
|
|
}
|
|
|
|
static void xlm_LanguageModel_getSuggestions(JNIEnv *env, jclass clazz,
|
|
// inputs
|
|
jlong dict,
|
|
jlong proximityInfo,
|
|
jstring context,
|
|
jstring partialWord,
|
|
jint inputMode,
|
|
jintArray inComposeX,
|
|
jintArray inComposeY,
|
|
|
|
// outputs
|
|
jobjectArray outPredictions,
|
|
jfloatArray outProbabilities
|
|
) {
|
|
LanguageModelState *state = reinterpret_cast<LanguageModelState *>(dict);
|
|
ProximityInfo *pInfo = reinterpret_cast<ProximityInfo *>(proximityInfo);
|
|
|
|
size_t inputSize = env->GetArrayLength(inComposeX);
|
|
|
|
const char* cstr = env->GetStringUTFChars(context, nullptr);
|
|
std::string contextString(cstr);
|
|
env->ReleaseStringUTFChars(context, cstr);
|
|
|
|
std::string partialWordString;
|
|
if(partialWord != nullptr){
|
|
const char* pwstr = env->GetStringUTFChars(partialWord, nullptr);
|
|
partialWordString = std::string(pwstr);
|
|
env->ReleaseStringUTFChars(partialWord, pwstr);
|
|
}
|
|
|
|
if(partialWordString.size() < inputSize) inputSize = partialWordString.size();
|
|
|
|
TIME_START(GettingMixes)
|
|
int xCoordinates[inputSize];
|
|
int yCoordinates[inputSize];
|
|
env->GetIntArrayRegion(inComposeX, 0, inputSize, xCoordinates);
|
|
env->GetIntArrayRegion(inComposeY, 0, inputSize, yCoordinates);
|
|
|
|
std::vector<TokenMix> mixes;
|
|
for(int i=0; i<inputSize; i++) {
|
|
char wc = partialWordString[i];
|
|
if (!(wc >= 'a' && wc <= 'z') && !(wc >= 'A' && wc <= 'Z')) continue;
|
|
|
|
std::vector<float> proportions = pInfo->decomposeTapPosition(xCoordinates[i], yCoordinates[i]);
|
|
for(float &f : proportions) {
|
|
if(f < 0.05f) f = 0.0f;
|
|
}
|
|
|
|
std::vector<std::pair<float, int>> index_value;
|
|
index_value.clear();
|
|
for (size_t k = 0; k < proportions.size(); k++) {
|
|
index_value.emplace_back(proportions[k], k);
|
|
}
|
|
|
|
sortProbabilityPairVectorDescending(index_value, NUM_TOKEN_MIX);
|
|
|
|
bool needs_resorting = false;
|
|
int num_symbols = 0;
|
|
for(int s=0; s<100; s++) {
|
|
for (int j = 0; j < NUM_TOKEN_MIX; j++) {
|
|
char c = (char) (pInfo->getKeyCodePoint(index_value[j].second));
|
|
|
|
if (c >= 'a' && c <= 'z') {
|
|
} else if (c >= 'A' && c <= 'Z') {
|
|
} else {
|
|
index_value[j].first = -99999.0f;
|
|
needs_resorting = true;
|
|
num_symbols++;
|
|
}
|
|
}
|
|
if(num_symbols == NUM_TOKEN_MIX) break;
|
|
if(!needs_resorting) break;
|
|
sortProbabilityPairVectorDescending(index_value, NUM_TOKEN_MIX);
|
|
}
|
|
if(num_symbols == NUM_TOKEN_MIX) continue; // Skip the symbol character
|
|
|
|
float total_sum = 0.0f;
|
|
for(int j=0; j<NUM_TOKEN_MIX; j++) {
|
|
total_sum += index_value[j].first;
|
|
}
|
|
|
|
if(total_sum == 0.0f) {
|
|
AKLOGE("Oh crap");
|
|
}
|
|
|
|
for(int j=0; j<NUM_TOKEN_MIX; j++) {
|
|
index_value[j].first /= total_sum;
|
|
}
|
|
|
|
TokenMix results;
|
|
results.x = ((float)xCoordinates[i]) / ((float)pInfo->getKeyboardWidth());
|
|
results.y = ((float)yCoordinates[i]) / ((float)pInfo->getKeyboardHeight());
|
|
|
|
//AKLOGI("%d | Char %c, pos %.6f %.6f, nearest is %c at %.2f, then %c at %.2f, finally %c at %.2f", i, partialWordString[i],
|
|
// results.x, results.y,
|
|
// (char)(pInfo->getKeyCodePoint(index_value[0].second)), (float)(index_value[0].first),
|
|
// (char)(pInfo->getKeyCodePoint(index_value[1].second)), (float)(index_value[1].first),
|
|
// (char)(pInfo->getKeyCodePoint(index_value[2].second)), (float)(index_value[2].first)
|
|
// );
|
|
|
|
|
|
for(int j=0; j<NUM_TOKEN_MIX; j++) {
|
|
char c = (char) (pInfo->getKeyCodePoint(index_value[j].second));
|
|
float w = (float) (index_value[j].first);
|
|
|
|
results.mixes[j].weight = w;
|
|
if(c >= 'a' && c <= 'z') {
|
|
results.mixes[j].token = (state->specialTokens.LETTERS_TO_IDS[c - 'a']);
|
|
}else if(c >= 'A' && c <= 'Z') {
|
|
results.mixes[j].token = (state->specialTokens.LETTERS_TO_IDS[c - 'A']);
|
|
} else {
|
|
AKLOGI("ignoring character in partial word [%c]", c);
|
|
results.mixes[j].weight = 0.0f;
|
|
}
|
|
}
|
|
|
|
mixes.push_back(results);
|
|
}
|
|
|
|
TIME_END(GettingMixes)
|
|
|
|
//AKLOGI("LanguageModel context [%s]", contextString.c_str());
|
|
|
|
bool isAutoCorrect = false;
|
|
std::vector<std::pair<float, std::string>> results;
|
|
if(partialWordString.empty()) {
|
|
results = state->PredictNextWord(contextString);
|
|
|
|
//for(const auto &result : results) {
|
|
// AKLOGI("LanguageModel suggestion %.2f [%s]", result.first, result.second.c_str());
|
|
//}
|
|
} else {
|
|
isAutoCorrect = true;
|
|
bool swipeMode = inputMode == 1;
|
|
results = state->PredictCorrection(contextString, partialWordString, mixes, swipeMode);
|
|
|
|
//for(const auto &result : results) {
|
|
// AKLOGI("LanguageModel correction %.2f [%s] -> [%s]", result.first, partialWordString.c_str(), result.second.c_str());
|
|
//}
|
|
}
|
|
|
|
// Output
|
|
size_t size = env->GetArrayLength(outPredictions);
|
|
|
|
jfloat *probsArray = env->GetFloatArrayElements(outProbabilities, nullptr);
|
|
|
|
// Output predictions for next word
|
|
for (int i = 0; i < results.size(); i++) {
|
|
jstring jstr = env->NewStringUTF(results[i].second.c_str());
|
|
env->SetObjectArrayElement(outPredictions, i, jstr);
|
|
probsArray[i] = results[i].first;
|
|
env->DeleteLocalRef(jstr);
|
|
}
|
|
|
|
env->ReleaseFloatArrayElements(outProbabilities, probsArray, 0);
|
|
}
|
|
|
|
static const JNINativeMethod sMethods[] = {
|
|
{
|
|
const_cast<char *>("openNative"),
|
|
const_cast<char *>("(Ljava/lang/String;)J"),
|
|
reinterpret_cast<void *>(xlm_LanguageModel_open)
|
|
},
|
|
{
|
|
const_cast<char *>("closeNative"),
|
|
const_cast<char *>("(J)V"),
|
|
reinterpret_cast<void *>(xlm_LanguageModel_close)
|
|
},
|
|
{
|
|
const_cast<char *>("getSuggestionsNative"),
|
|
const_cast<char *>("(JJLjava/lang/String;Ljava/lang/String;I[I[I[Ljava/lang/String;[F)V"),
|
|
reinterpret_cast<void *>(xlm_LanguageModel_getSuggestions)
|
|
}
|
|
};
|
|
|
|
|
|
static void llama_log_callback(ggml_log_level level, const char * text, void * user_data) {
|
|
switch(level) {
|
|
case GGML_LOG_LEVEL_ERROR:
|
|
AKLOGE("llama err: %s", text);
|
|
break;
|
|
case GGML_LOG_LEVEL_WARN:
|
|
AKLOGI("llama warn: %s", text);
|
|
break;
|
|
case GGML_LOG_LEVEL_INFO:
|
|
AKLOGI("llama info: %s", text);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int register_LanguageModel(JNIEnv *env) {
|
|
llama_backend_init(true /* numa??? */);
|
|
llama_log_set(llama_log_callback, nullptr);
|
|
|
|
const char *const kClassPathName = "org/futo/inputmethod/latin/xlm/LanguageModel";
|
|
return registerNativeMethods(env, kClassPathName, sMethods, NELEMS(sMethods));
|
|
}
|
|
} // namespace latinime
|